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Purpose: To test the hypothesis whether user perception of trustworthiness and robustness 

of a machine learning algorithm using Federal machine learning approach of AI-based 

tools in radiology medical imaging has positive co-relation with user adoption intent. 

Methodology: The quantitative study used perceived trustworthiness and robustness as the 

two independent variables and user adoption intent of AI-based tool in radiology medical 

imaging as the dependent variable. An online survey was planned as data collection 

instrument. The online survey consists of 12 research questionnaires, few of them on 



vi  

 

Likert scale. To improve the quality and efficiency of the study, the Survey questionnaire 

was reviewed by experts and minor changes adopted. Pearson correlation was calculated 

on each independent variable versus the dependent variable and a linear regression was 

performed to test the correlation between both independent variables and the dependent 

variable. 

 
 

Results: The survey link was sent to 256 recipients out of which 53 responded, giving the 

survey a 20.71% response rate, with 51 fully completing the surveys. Most of the 

respondents were Radiologists (45.10%), predominantly in the range of 10-15 years of 

experience (39.22%) and majority (35.29%) lived in India. Of 51 respondents, 44 (86.3%) 

had knowledge of federated learning and 7 (13.7%) had no knowledge of federated 

learning. Out of the 44 respondents who had knowledge of federated learning, 23 (52.27%) 

had moderate level of knowledge, 8 respondents had high level of knowledge, 1 respondent 

had very high and 5 (9.8%) had very low. Out of 51 respondents, 21 (41.2%) were currently 

a user of AI-based tools for radiology workflows and 22 (43.1%) either particpated or 

contributed in research or experiments related to federated learning or they intent to do. 

Due to the effect size (r=.549 for perceived trustworthiness and r=.303 for perceived 

robustness), it can also be stated that there is a moderately positive effect (medium) for 

trustworthiness and positively small effect for robustness individually in correlation with 

adoption intentions. The results from linear regression showed that model had adjusted r- 

squared of .302 indicating positive relationship. The average of the trustworthiness 



vii  

 

variable had a positive unstandardized beta of .586 and the average of Robustness had a 

positive unstandardized beta of .020. 

In addition, an analysis of the experience ranges showed a potential difference in perceived 

adoption intentions in respondents in range of 10-15 years. The respondents with moderate 

and high level of knowledge had same mean for adoption intent (4.2). The respondents 

who were radiologists have relatively lower level of perception when compared with other 

respondents. 

 
 

Conclusion: The independent variables - User perception of federated learning’s 

trustworthiness and robustness are statistically significant and influence positive 

correlation with dependent factor user adoption intent of AI-based tools in medical imaging 

in radiology. Also, it was concluded that difference in experience, levels of knowledge in 

federated learning and type of role of respondents had difference in answering the 

questionnaire and their perception. Further research could examine and provide valuable 

insights. 



viii  

 

TABLE OF CONTENTS 

List of Tables ...................................................................................................................... x 

LIST OF FIGURES ........................................................................................................... xi 

CHAPTER I: INTRODUCTION ....................................................................................... 1 

1.1 Definitions of Terms ............................................................................. 1 

1.2 Introduction ........................................................................................... 2 

1.3 Research Problem ............................................................................... 10 

1.4 Purpose of Research ............................................................................ 11 

1.5 Significance of the Study .................................................................... 12 

1.6 Research Purpose and Questions ........................................................ 12 

CHAPTER II: REVIEW OF LITERATURE ................................................................... 14 

2.1 Technological Concerns...................................................................... 31 

2.2 Ethical Concerns ................................................................................. 36 

2.3 Regulatory Concerns ........................................................................... 42 

2.4 Federated Learning Approach ............................................................ 50 

2.5 Challenges in Federated Learning ...................................................... 64 

2.6 Consumer Perception .......................................................................... 79 

2.7 Summary of Literature Review ........................................................... 81 

CHAPTER III: METHODOLOGY .................................................................................. 91 

3.1 Overview of the Research Problem .................................................... 91 

3.2 Operationalization of Theoretical Constructs ..................................... 92 

3.3 Research Design.................................................................................. 94 

3.4 Expert Review of Survey Questionnaire ............................................. 94 

3.5 Population and Sample ....................................................................... 95 

3.6 Participant Selection ........................................................................... 96 

3.7 Instrumentation ................................................................................... 96 

3.8 Data Collection Procedures................................................................. 97 

3.9 Data Analysis ...................................................................................... 98 

3.10 Research Design Limitations .......................................................... 100 

3.11 Conclusion ...................................................................................... 102 

CHAPTER IV: RESULTS .............................................................................................. 104 

4.1 Introduction ....................................................................................... 104 

4.2 Sample .............................................................................................. 104 

4.3 Type of Respondents ......................................................................... 105 

4.4 Experience of Respondents ............................................................... 105 

4.5 Respondents Location data ............................................................... 106 



ix 

 

4.6 Respondents Knowledge of Federated Learning .............................. 108 

4.7 Respondents Level of Knowledge of Federated Learning ................ 109 

4.8 Respondents Currently Users of AI-based tool for Radiology 

Clinical Workflows ................................................................................. 111 

4.9 Respondents Currently Users of AI-based tool for other than 
Radiology Clinical Workflows (For example: Ophthalmology) ............. 112 

4.10 Respondents who Participated/Contributed to Research or 
Experiments related to Federated Machine Learning or Currently 

Intent to do .............................................................................................. 113 

4.11 Respondents Perceived Trustworthiness vs Adoption intent .......... 114 

4.12 Respondents Perceived Robustness vs Adoption intent ................. 116 

4.13 Other Findings ................................................................................ 119 

4.13.1 Respondents Difference between Experience Groups ................. 119 

4.13.2 Respondents Level of Knowledge in Federated Learning ........... 120 

4.13.3 Type of Role among Respondents ............................................... 122 

4.14 Summary of Findings ...................................................................... 123 

4.15 Conclusion ...................................................................................... 124 

CHAPTER V: DISCUSSION ......................................................................................... 125 

5.1 Discussion of Results ........................................................................ 125 

5.2 Discussion of Research Hypothesis 1 and 2 ..................................... 127 

5.3 Discussion of Research Hypothesis 3 ............................................... 127 

CHAPTER VI: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS ........ 128 

6.1 Summary ........................................................................................... 128 

6.2 Implications ...................................................................................... 128 

6.2.1 Business Implication ...................................................................... 128 

6.2.2 Academic Implication .................................................................... 130 

6.3 Recommendations for Future Research ............................................ 131 

6.4 Conclusion ........................................................................................ 156 

CHAPTER VII: APPENDIX .......................................................................................... 160 

APPENDIX A SURVEY QUESTIONAIRE ........................................ 160 

CHAPTER VIII: REFERENCES ................................................................................... 176 



x  

 

LIST OF TABLES 

 
Table 1 Measurement Constructs (Esmaeilzadeh, 2020) .................................................. 93 

Table 2 Respondents Knowledge of Federated Learning ............................................... 108 

Table 3 Respondents Level of Knowledge of Federated Learning ................................. 110 

Table 4 Respondents Currently Users of AI-based tool for Radiology Clinical Workflows 

....................................................................................................................................    111 

Table 5 Respondents Currently Users of AI-based tool for other than Radiology Clinical 

Workflows....................................................................................................................... 112 

Table 6 Respondents who Participated/Contributed to Research or Experiments related to 

Federated Machine Learning or currently intent to do ................................................... 114 

Table 7 Respondents Perceived Trustworthiness vs Adoption intent - Descriptive 

Statistics .......................................................................................................................... 115 

Table 8 Respondents Perceived Trustworthiness vs Adoption intent - Correlations ...... 116 

Table 9 Respondents Perceived Robustness vs Adoption intent - Descriptive Statistics 116 

Table 10 Respondents Perceived Trustworthiness and Robustness vs Adoption intent . 117 

Table 11 Respondents Perceived Trustworthiness and Robustness vs Adoption intent - 

Model Summary .............................................................................................................. 118 

Table 12 Respondents Perceived Trustworthiness and Robustness vs Adoption intent – 

ANOVA .......................................................................................................................... 118 

Table 13 Respondents Perceived Robustness and Robustness vs Adoption intent – 

Coefficients ..................................................................................................................... 119 

Table 14 Respondents Difference between experience groups – Mean ......................... 120 

Table 15 Respondents Level of knowledge in Federated Learning – Mean ................... 121 

Table 16 Type of role – Mean ......................................................................................... 123 



xi  

 

 

LIST OF FIGURES 

Figure 1 Image shows different categories of machine learning (Choy et al., 2018) ....... 18 

Figure 2 Supervised and unsupervised learning paradigms (Choy et al., 2018) ............... 20 

Figure 3 Clinical Applications of Machine Learning in Radiology (Choy et al., 2018) ... 27 

Figure 4 Illustration of implementation of an artificial intelligence in radiology. (Pianykh 

et al., 2020) ....................................................................................................................... 29 

Figure 5 The AI Lifecycle (Dreyer and Coombs, 2020) ................................................... 44 

Figure 6 Comparison of Traditional Vs Federated Machine Learning (Ng et al., 2021; 

Rieke et al., 2020) ............................................................................................................. 57 

Figure 7 Distribution of Respondents ............................................................................. 105 

Figure 8 Experience of Respondents in relevant Field, Role, or Area ............................ 106 

Figure 9 Respondents Location Data .............................................................................. 107 

Figure 10 Respondents Knowledge of Federated Learning ............................................ 109 

Figure 11 Respondents Level of Knowledge of Federated Learning .............................. 110 

Figure 12 Respondents Currently Users of AI-based tool for Radiology Clinical 

Workflows....................................................................................................................... 111 

Figure 13 Respondents Currently Users of AI-based tool for other than Radiology 

Clinical Workflows ......................................................................................................... 113 

Figure 14 Respondents who Participated/Contributed to Research or Experiments related 

to Federated Machine Learning or Currently Intent to do .............................................. 114 



1  

CHAPTER I: 

INTRODUCTION 

1.1 Definitions of Terms 

 

Algorithms: Algorithm refers to a set of rules/instructions that step-by-step define 

how a work is to be executed upon in order to get the expected results. 

Artificial Intelligence (AI): The simulation of human intelligence processes by 

machines, especially computer systems. These processes include learning (the acquisition 

of information and rules for using the information), reasoning (using rules to reach 

approximate or definite conclusions) and self-correction. 

Bias: systematic difference in treatment of certain objects, people, or groups in 

comparison to others (DRAFT ISO/IEC DIS 22989, 3.4.4. p 10) 

Deep Learning (DL): Deep learning is an artificial intelligence (AI) function that 

imitates the workings of the human brain in processing data and creating patterns for use 

in decision making. 

Homomorphic Encryption: Homomorphic Encryptions is a technique which 

allows computational encryption on data enabling AI functions without the need to transfer 

personal information. It includes key generation, encryption, decryption and evaluation 

algorithms. 

Robustness: ability of a system to maintain its level of performance under any 

circumstances (DRAFT ISO/IEC DIS 22989, 3.4.11. p 11) 

Trustworthiness: ability to meet stakeholders’ expectations in a verifiable way 
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(DRAFT ISO/IEC DIS 22989, 3.4.11. p 11) 

 

Federated learning (FL): A learning paradigm seeking to address the problem of 

data governance and privacy by training algorithms collaboratively without exchanging the 

data itself (Reike et. al., 2020). 

Machine Learning (ML): Machine learning is an application of Artificial 

Intelligence (AI) that provides systems the ability to automatically learn and improve 

from experience without being explicitly programmed 

 

1.2 Introduction 

 
 

The global market size for Artificial Intelligence (AI) in healthcare is estimated 

roughly $28 billion in 2025 (Benjamens et al. (2020). Research on artificial intelligence 

(AI), and particularly the advances in machine learning (ML) and deep learning (DL) have 

led to disruptive innovations in radiology, pathology, genomics and other fields. Presently, 

AI technology has been used to support patient-specific diagnosis, treatment decisions and 

perform population-based risk prediction analytics (Romero-Brufau et al., 2020). Choy et 

al. (2018) emphasized that machine learning has potential to improve different steps 

including clinical decision support systems, treatment planning, triaging in radiology. 

Healthcare Companies and start-ups are now focusing on strategizing to promote AI-based 

services and AI marketplace (Coombs et al., 2020; (Kumar et al., 2020). 

Radiology is currently facing multiple challenges. With increasing population, and 

an increasing demand for imaging and diagnostic services, there is a global shortage of 

radiologists. Recent trends suggest that the volume of images is growing faster than the 
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number of radiologists. The high workload may lead to errors in diagnosis due to human 

fatigue, unacceptable delays in reporting, and stress and burnouts in radiologists. These 

challenges have reduced the available time of the radiologists to evaluate a single scan and 

worldwide shortage of qualified radiologists to read, interpret, and report these images 

(Rimmer, 2017). 

This pressure has been shown to influence the well-being of radiologists, pushing 

many significantly and negatively to burnout, and consequently reducing the department's 

productivity and quality of medical care given to patients (Hosny et al., 2018). The use of 

artificial intelligence (AI) might be one of the solutions to relieve the radiologists' 

workload, but what are some of the challenges for clinical implementation and adoption. 

The development of artificial intelligence (AI) in healthcare has increased 

productivity and improving efficiency for specific tasks for Clinicians by enabling time- 

saving benefits. Hospitals are deploying artificial intelligence medical software suits as a 

complete package for the usage or taking up one program at a time which is used the most 

in the industry. The diagnostic imaging center's significant revenue generation is through 

imaging procedures, and they are primarily involved in implementing advanced products, 

which will attract customers (Markets, 2022). AI algorithms have proven that they can 

automate some of the tedious tasks in clinical practice (Barzescu, 2020). For instance, AI 

in medical imaging, along with clinical data, is helping physicians to predict heart attacks 

in patients accurately. To adopt AI solutions, buying decisions for Hospitals increasingly 

rely on considerations of their concrete added value to the health system. 
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The implementation of AI-based tools in radiology is expected to improve 

workflow efficiency without sacrificing accuracy, thus keeping radiology sustainable and 

accessible. AI-based tools can be applied to time-consuming and labor-intensive tasks, 

such as volumetric measurement or structural segmentation, which can accelerate the 

diagnostic pathway while maintaining quality continuous care. In addition, it can give 

radiologists more time for complex cases, speed up simple cases, and increase 

standardization (Hosny et al., 2018). 

Such increased standardization, when it comes to tasks such as structured reporting, 

can have a positive impact on diagnosis and treatment, by reducing communication barriers 

and optimizing treatment decision-making process. In the case of prostate cancer, for 

example, AI-assisted MRI evaluation early in the diagnosis could help physicians later in 

the diagnosis process, helping urologists perform MRI-guided biopsies (Bjurlin et al., 

2020), pathologists with tumor staging, and radiation oncologists with MRI treatment (Xie 

et al., 2022). 

A recent paper calls AI regulators, cross-disciplinary organization and key 

stakeholder collaboration along the AI care roadmap to facilitate successful clinical 

deployment of AI resources ( Daye et al., 2022). Such a regulator could create a road map 

for what kind of tools to deploy, how to assess them for their populations, how to 

implement and, equally important, how to monitor and maintain those developments. that 

declaration (Daye et al., 2022). 
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This can be important because while AI has many clinical benefits, hospital- and 

patient-level differences can lead to different priorities when it comes to implementation. 

For example, centers with high patient volumes and long grueling patient care routes can 

prioritize time savings with streamlined workflows. Other financially constrained centers 

may aim to improve accuracy, reduce overtreatment and redundant second-line diagnostic 

work, reduce overworked clinicians, and improve quality of life of patients (Beck, 2022). 

Benjamens, Dhunnoo and Meskó (2020) reported in the study that the two top 

medical specialties leading innovation with AI-based algorithms are radiology (72.4%) and 

cardiology (13, 8%) based on agency regulatory license volume trends - USA. Food and 

Drug Administration (FDA). There are also other specialties that focus on internal 

medicine/endocrinology, neurology, ophthalmology, emergency medicine and oncology. 

This study covers approvals through February 2020. The number of regulatory approvals 

has increased significantly (521 entries as of January 17, 2023), which can now be tracked 

officially on the page (US Food & Drug Administration web site, 2023). The clear upward 

trend means that AI algorithms are being integrated and commercialized into clinical 

workflows and more customers are adopting AI-based tools. 

Generally, machine learning techniques are developed by using a train-test system. 

Ideally, three primary sets of data for training, testing, and validation are needed. The 

training data set is used to fit the model. During training process, the algorithm learns from 

examples. The validation set is used to evaluate different model fits on a separate data and 

to tune the model parameters. Most training approaches tend to overfit training data, 

meaning that they find relationships that fit the training data set well but do not hold in 
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general. Therefore, in order to avoid overfitting and optimize the algorithm, successive 

iterations of training and validation may be performed. In the testing set, after a machine 

learning algorithm is initially developed, the final model fit may then be applied to an 

independent testing data set to assess the performance, accuracy, and generalizability of 

the algorithm (Choy et al., 2018). 

In radiology, developing machine learning models involves several challenges. 

High quality training data is vital for good model performance but is difficult to obtain. 

The available data may lack volume or diversity. It may be dispersed across multiple 

hospitals. Even if image data is available, it may not be labelled. Radiographic scans have 

a high degree of inter-reader variability when two or more radiologists label data 

inconsistently; this can lead to noise or uncertainty in the underlying truth label. The 

distribution of target classes can be very skewed, especially for rare diseases. This 

imbalance in class representation is often accompanied by the cost of unequal 

misclassification across classes. Care must be taken when dealing with unbalanced 

datasets, which sometimes require the use of special performance measures. A model that 

performs well on data from one hospital may perform poorly on data from another. 

Similarly, a model implemented in practice in one hospital may experience gradual 

deterioration in performance within the same hospital. Machine learning models have 

proven to be vulnerable to exploits and malicious attacks. To support adoption by 

radiologists, the models deployed must be able to explain their decisions and they must not 

discriminate against patients on the basis of gender, ethnicity, age, income, etc. 
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The major barriers in adaption the AI-based tools by customers were 

generalizability, lack of trust due to bias and safety mechanisms and complying with 

regulations through transparent and explainable algorithm while preserving data privacy 

and security (Kelly et al., 2019, Meskó and Görög, 2020). Bias in AI models may be 

inherited when datasets are not representative of the target population, or incomplete and 

inaccurate data are used by AI systems for decision-making (Vayena et al., 2018). 

Data plays an important role in machine learning systems due to its impact on 

model performance. Although widely deployed remote devices (e.g. mobile/IoT devices) 

generate huge amounts of data, the thirst for data remains a challenge due to growing 

concerns about rights. data privacy (e.g. General Data Protection Regulation (GDPR). 

Protecting patient privacy in the provision of healthcare is an essential ethical principle, for 

the sake of privacy, patients' well-being and identity (Cath, 2018). If a patient's privacy 

needs are not met, the patient can suffer psychological and reputational damage (Dawson 

et al. work, 2019). 

Another challenge that AI software faces in clinical implementation is the lack or 

lack of clinical evidence, i.e. studies that evaluate the software in clinical settings using 

actual use cases. While software manufacturers provide endorsements to regulators to 

demonstrate the use of AI required for their approval (e.g. FDA license or CE marking), 

conducting Larger clinical trials can be difficult to prove difficult to do. Joint research 

between clinics (and/or universities) and established companies to assess the (clinical) 

usefulness of real-world AI, encouraging better software and, therefore, filling fill these 
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gaps in clinical evidence. In addition, peer-reviewed reviews that follow newly created 

guidelines, such as DECIDE-AI, are available (Beck, 2022). 

For effective healthcare delivery, trust between the public and the health system is 

an important factor (Char, Shah, & Magnus, 2018). Trust in AI-based tools is considered 

an important factor influencing adoption decisions in clinical workflows (Hengstler, Enkel, 

& Duelli, 2016). Gaining confidence in the use of AI is considered a significant challenge 

for successful AI implementation in medical practice (Whittlestone et al., 2019). If users 

don't understand how AI devices work, they may have less confidence in their functioning 

and how they create therapeutic solutions. 

As customer use of AI-based tools and services in X-ray medical imaging is 

expected to increase, the need to implement a robust and reliable machine learning 

algorithm is anticipated is an important requirement (Venugopal et al., 2022). These are 

essential for a successful AI solution implementation. Previous studies have shown that in 

clinical workflows, not all individuals are willing to accept the use of AI-based tools (Laï, 

Brian & Mamzer, 2020). Chew and Achananuparp (2022) took a strong position in research 

assessing the extent that the perception and need of AI in the use of AI in healthcare are 

key to improving adoption intention. 

Building good machine learning models with limited data sets at individual 

locations is difficult because traditional machine learning centralizes training data on a 

single machine or in a data center. As suggested by Ng et al. (2021), an alternative is 

federated machine learning. The concept of Federated learning was first proposed by 

Google in 2016. In federated learning, client devices perform model training locally and 
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generate a global model collaboratively. The data is stored locally and is never transferred 

to the central server or other clients. Instead, only model updates are communicated for 

formulating the global model (Qian et al., 2019). 

Federated learning is a technique for training machine learning models with the 

knowledge that we do not have access to (Kaissis et al., 2020). The data is collected, 

processed into a dataset and transmitted to a central server to train the dataset in any model, 

and we get the predicted output. This helps us to feed the algorithm into the data instead of 

doing this federated learning and then passing the results to a central server. This implies 

that users will not be prompted to upload their personal information. Predictive 

maintenance is powered by Federated Learning. Based on the results from the central 

server, predictive maintenance predicts when the system will need maintenance. 

In the healthcare domain, federated learning use cases for devices would allow the 

user to learn a model of machine learning that will help patients improve certain aspects of 

their health without having to upload their data to a central cloud. Federated learning entails 

using a wide corpus of high-quality decentralized data distributed through several client 

devices for instruction. Since the model is trained on client computers, no data from the 

user is expected to be submitted. Keeping the client's personal data on their computer gives 

them clear and physical control of their information (Shah et al., 2021). 

The recent study across healthcare systems supports the hypothesis that federated 

learning trained models are generalizable and robust (Dayan et al., 2021). Federated 

learning promises to address above concerns with respect to trust, bias, privacy, 

generalizability by offering easy scalability, flexible training scheduling, and large training 
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datasets through multi-site collaborations. However, there are still challenges remain and 

must be addressed before federated learning is optimally able to build trustworthy AI 

models. Additionally, as federated learning in medical imaging AI is novel topic, this has 

the potential to attract investment by vendors and inspire researchers, whose work will be 

necessary to advance the field forward. Based on my verification of the database and there 

were no specific federated learning based algorithms have obtained regulatory clearance 

till date (US Food & Drug Administration web site, 2023). It can be safely assumed from 

my opinion that there are no federated learning based algorithms that is being currently 

used in any of the institutions in their clinical workflows. 

 

 

1.3 Research Problem 

 

Users of traditional machine learning in medical imaging are concerned about 

processing the data over cloud and do not trust the algorithm due to concerns over bias, 

generalizability and data privacy issues resulting in slower adoption rate of AI-based tools 

in radiology medical imaging (Turja et al., 2020; Masud et al., 2019; Sun and Medaglia, 

2019). 

Several experimental studies conducted in radiology medical imaging has positive 

results showing federated learning performs better than traditional machine learning. The 

outcome of the preliminary literature study indicates theoretically that federated learning 

could have positive correlation in customers perception of trustworthiness and robustness 

of machine learning algorithms, however there is still gap to understand whether there is 
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positive correlation of customer’s perception in federated machine learning algorithm 

which may impact customers adoption intent of AI-based tools (Stripelis et al., 2021; Yang 

et al., 2021; Linardos et al., 2021; Sarma et al., 2021; Dayan et al., 2021; Sheller et al., 2020). 

Currently, there are no user surveys available to evaluate the association of user 

perception about federated learning approach with their adoption intent which is important 

factor for vendors to consider investing in research and development in this emerging 

technology. 

 

 

 
1.4 Purpose of Research 

 

In this machine learning, as the paradigm is shifting towards using federated 

machine learning over traditional machine learning, based on outcome of literature 

research and in my opinion, there is a gap in understanding of perceived trustworthiness 

and robustness of federated machine learning algorithm and correlation with user adoption 

intent. Masud et al., (2019) has concluded that in general, the perceptions of radiologists 

have not been considered and details of implementation approaches for adoption of 

machine learning tools have not been reported. 

This research is aimed to test hypothesis to understand the association of user’s 

perception on trust and robustness in federated machine learning tools over traditional 

machine learning that could influence the user adoption intent of AI-based tools in 

radiology medical imaging. 
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1.5 Significance of the Study 

 
 

To advance further with use of AI-based tools in medical imaging, machine 

learning vendors and users must adapt federated learning approach. To assess the business 

value of investing and deploying federated learning approach, it is critical to understand 

the influence of perceived trustworthiness and robustness of federated learning algorithm 

with user adoption intent. Ultimately, the study aimed to contribute to the development of 

a value proposition for AI-based tools by evaluating stakeholders’ perceptions of the 

adoption of AI in radiology. 

 

 

1.6 Research Purpose and Questions 

 

The intent of this research is to test hypotheses whether there is positive correlation 

of trustworthiness and robustness of federated machine learning models which influences 

the user adoption intent of AI-based tools in radiology medical imaging. 

For this study, the research question is: 

 

What are the associations of federated machine learning approach over traditional machine 

learning towards perceived trustworthiness and robustness and its prediction with user’s 

adoption intent of AI-based tools in radiology medical imaging? 

Below is the hypothesis: 

 

H1: User perception of federated learning’s trustworthiness has a positive 

correlation with user adoption intent of AI-based tools in medical imaging in radiology 
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H2: User perception of federated learning’s robustness has a positive correlation 

with user adoption intent of AI-based tools in medical imaging in radiology 

H3: User perception of federated learning’s trustworthiness and robustness have a 

positive correlation with user adoption intent of AI-based tools in medical imaging in 

radiology. 
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CHAPTER II: 

REVIEW OF LITERATURE 

 
The term “Artifical intelligence” dates lower back to as a minimum the mid- 

twentieth century. Artificial Intelligence has improved signifcantly and begins since the 

term was first coined in 1956 by American scientist John McCarthy. In the Eighties and 

1990s, AI become focussed on rule-based ‘expert systems’ that carried out predefined 

logical rules. Later, considerable development was withnessed with hype, expectancies and 

disappointment. Data-driven AI has emerged as the principle enabler of technology in 

2000’s. AI is now advanced at level wherein it could have interaction and speak with people 

via analytics and automation. AI can carry out human-like cognitive functions (e.g. 

recognising styles from statistics and expertise images, textual content or speech), in 

addition to make predictions, tips and decisions. AI can permit computer systems to imitate 

human intelligence so we can learn, sense, assume and act, with a purpose to gain 

automation and benefit analytic insights. 

Machines have the ability to "feel" and "act" in relation to people and the 

environment through user interfaces, sensors and robotics, the AI is equipped with a 

"thinking" component - e.g. Support making predictions, recommendations or decisions. 

AI applications use two computational approaches: rule-based and rule-based to mimic the 

human mind. 

Rule-based AI systems became popular in the 1960s and dominated from the 1970s 

to the 1990s, especially for industrial robots performing repetitive tasks. However, it has 
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limited applications, adding new rules or knowledge to these systems is very time- 

consuming and expensive so that they can respond to the changing business environment. 

Also, it was very difficult to clearly define the rules programmatically or declaratively. 

This led to the development of illegal AI. AI without reasoning can make decisions 

according to a set of pre-defined rules and can also gain meaningful insights by 

automatically "learning" from its input. 

Machine Learning (ML) enables training capabilities in AI. Machine learning is a 

data science technique that allows computers to learn without being programmed with 

explicit rules. Machine learning makes it possible to develop algorithms that can learn and 

make predictions. Unlike rule-based algorithms, machine learning uses access to large and 

fresh data sets and has the ability to improve and learn from experience. 

Instead of being explicitly programmed to perform certain tasks, machine learning 

involves using a set of learning algorithms driven by mathematical techniques which allow 

machines to learn from data. The training process uses the learning algorithm to derive 

relationships between data points from training data, which is commonly a subset of 

historical data. The outputs of the training are trained machine learning models, which can 

perform predictions or make decisions according to the data patterns observed from the 

input data, or from queries provided by users. 

Machine learning (ML) is a tool used in the context of artificial intelligence (AI). 

ML includes pattern recognition, artificial neural networks, computational statistics, data 

mining, image processing, and adaptive algorithms. ML algorithms are designed and 
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developed to recognize specific patterns in data and gradually improve their predictive 

ability. 

In other words, ML can be seen as a natural extension of traditional statistical 

methods. ML is a model that learns from case examples rather than rules. The examples 

act as the ML input (classification) and the calculated result as the output (label). For 

example, a biopsy sample read by a pathologist can be scanned and converted into layers, 

i.e. a set of pixels that make up the test, and into labels, i.e. disease classification 

information (Kashani et al., 2020). 

ML is capable of identifying subtle data patterns that cannot be easily described by 

humans and extracting insights from less structured data. As a result, ML has become the 

main technique driving the current wave of AI applications – from call center voice 

analysis to autonomous vehicles. 

However, ML is generally heavy on data and computation. To find data patterns or 

relationships and make accurate predictions, ML has to process huge volumes of data. They 

must perform computationally intensive statistical techniques and mathematical algorithms 

to train the model as well as to tune and test model selection. Even for rule-based AI, 

experts often perform data analysis and statistical hypothesis on historical data sample sets 

using statistical techniques. Also known as "data mining," this method finds statistically 

significant data patterns when it comes to predefined rules to program into AI's knowledge 

base. 

In fact, machine learning and data mining involve many statistical models and 

algorithms. The former differs from the latter in that data mining is performed by a 
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knowledge worker on a particular data set with a specific goal i.e. to discover patterns and 

derive insights. color from the data set. In contrast, machine learning algorithms are 

performed automatically or semi-automatically by computers. The quality and quantity of 

training data directly affects the prediction accuracy of most AI models. Proper data 

preprocessing, including data collection, data profiling, cleaning, transformation, and 

labeling of training data, is critical to successful AI development. 

Raw training data can come in many formats: including structured data (such as 

historical stock trading records stored in a database), semi-structured data (such as like 

social media feeds) and unstructured data - like audio, video, and image. ML algorithms 

require this training data to be cleaned and converted into a deterministic format that can 

be easily read by the machine. For example, speech recognition technologies do this by 

converting voice recordings into machine-readable text that can be used to train Chatbots. 

To derive insights about relationships between data, data scientists may also need to assign 

meaning to training data based on domain knowledge, i.e. data labeling. For example, if 

the task is to train the AI to classify scanned image documents, then data scientists will 

need to label the document type (i.e. output or labeled data) for each scanned image (ie 

input data). 

Training ML models requires millions of data. The preprocessing and labeling of 

this data is labor intensive and takes up most of the work in the ML model training process. 

As a result, the development of machine learning in previous waves of AI was slow. But 

with recent advances in big data technology, large amounts of data can now be collected 

and processed. 
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Machine learning tasks are typically classified into three broad categories, 

depending on the type of task: supervised, unsupervised, and reinforcement learning 

(Figure 1). 

 

 
 

Figure 1 Image shows different categories of machine learning (Choy et al., 2018) 
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In supervised learning, labeling information is provided to the algorithm during the 

training phase with supervision in training. Expected results are usually noted by human 

experts and serve as ground truth for the algorithm. The goal of an algorithm is usually to 

learn a general rule that maps inputs to outputs. In machine learning, data that is true is 

called "ground truth". In unsupervised learning, no data labels are assigned to the learning 

rate. The goal of the machine learning task is to find the hidden structure in the data and 

separate the data into clusters or groups. In reinforcement learning, an algorithm performs 

a specific task in a dynamic environment where it receives feedback in the form of positive 

and negative reinforcement (for example, playing a game against an opponent). Active 

learning is learning the consequences of interacting with the environment without explicit 

instruction. Examples of supervised and unsupervised learning methods are shown in 

Figure 2. A machine learning paradigm can use a combination of supervised and 

unsupervised techniques with a robust feedback loop. 
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Figure 2 Supervised and unsupervised learning paradigms (Choy et al., 2018) 

 
 

Artificial intelligence, in contrast to machine learning, encompasses a broader 

range of intelligent tasks performed by computers, such as problem solving, planning, 

knowledge representation, language processing, or "learning." Therefore, machine learning 

is a form of artificial intelligence. For example, rule-based algorithms such as computer- 

aided diagnosis, which have been used in mammography for several years, represent a type 

of artificial intelligence, but not a type of machine learning. However, computer-aided 

diagnosis is a broader term and can include machine learning approaches. By definition, 

machine learning algorithms improve automatically with experience and are not rule- 
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based. Machine learning is gaining popularity in a variety of use cases, and in fact many 

artificial intelligence applications are currently using machine learning approaches. 

A suite of new machine learning algorithms has increased computing power, and 

the explosion in the availability of very large datasets (“big data”) (Samek, Wiegand, and 

Müller, 2018) due to the digitization of health information has led to remarkable recent 

advances with evidence of machines achieving human-level competence in many fields 

(e.g., breast cancer prevention) for solving well-defined tasks (McKinney et al., 2020). 

 

 

Medical Imaging 

 

There have been several publications on the use of AI in medical imaging over the 

past few years. Several areas have received considerable interest - radiology, pathology, 

ophthalmology and dermatology - due to the intuitive nature of diagnostic tasks in these 

specialties and the increasing availability of highly structured images. A number of 

companies have been approved by the US FDA and CE Europe for AI in medical imaging, 

and the commercial market has begun to take shape as sustainable business models are 

created. For example, high-throughput healthcare regions, such as India and Thailand, have 

welcomed the deployment of technologies such as diabetic retinopathy screening systems. 

This rapid growth has now reached the point of having a direct impact on patient outcomes 

– US CMS recently approved reimbursement for radiographic stroke management, which 

reduces time required for the patient to be treated. In radiology, the field of AI has seen 

tremendous growth in research, spanning all modalities centered on X-rays, CT scans, and 
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magnetic resonance imaging. An example of this is X-ray analysis - a major clinical area. 

Brain imaging analysis (especially for time-sensitive cases such as stroke) and abdominal 

imaging are also of great interest. Disease classification, node detection, and partitioning 

(e.g., ventricular) models have been developed for most diseases for which data can be 

collected. This has enabled the industry to respond quickly in times of crisis by applying 

AI-based algorithms for classification, such as the development and deployment of 

diagnostic models for COVID-19. The field continues with work in image translation (e.g., 

converting noisy ultrasound images to MRI), reconstruction, and image enhancement (e.g., 

converting low-frequency CT images and imaging). low-resolution to high-resolution 

imaging), automating reporting and time tracking (e.g., recording images to monitor tumor 

growth over time). In the following sections, we explore applications in different fields. 

 

 

 

 
Cardiology 

 

Cardiac imaging is increasingly used in various diagnostic and clinical procedures. 

The main clinical applications of deep learning include diagnosis and screening. The most 

common imaging method in cardiovascular medicine is echocardiography or 

echocardiography. As an inexpensive, radiation-free modality, echocardiography is 

suitable for LD due to ease of data collection and interpretation - it is commonly used in 

most acute care settings, outpatient centers and emergency room. In addition, 3D imaging 

techniques such as CT and MRI are used to understand cardiac anatomy and better 



23  

 

characterize the mismatch between supply and demand. CT segmentation algorithms have 

even been approved by the FDA for coronary angiography. 

 

 

Pathology 

 

Pathologists play an important role in cancer detection and treatment. Pathological 

analysis - based on visual examination of tissue samples under a microscope - is inherently 

subjective. Differences in visual perception and clinical training can lead to differences in 

diagnostic opinion and prognosis. Here, DL can support critical medical tasks including 

diagnosis, predicting treatment outcome and success, pathology segmentation, disease 

monitoring, and more. 

In recent years, whole gigapixel (WSI) submicron resolution tissue scanners have 

been introduced. This development, coupled with advances in AI-based digital 

histopathology, has led to research and commercial activities. This field has the potential 

to (i) overcome the limitations of human visual perception and thinking by increasing the 

efficiency and accuracy of routine tasks, (ii) develop signs of and new methods of treating 

diseases from morphological structures invisible to the human eye, and (iii) combining 

pathology with radiometric measuremens, genomics and proteomics to improve diagnosis 

and prognosis. 

A research topic focused on automating the frequent and time-consuming task of 

locating and quantifying morphological features. Examples include the detection and 

classification of cells, nuclei, and mitosis, as well as the location and segmentation of 
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histological primitives such as nucleus, gland, duct, and tumor. These methods often 

require manual annotation of tissue components by pathologists as training data. 

Another line of research focuses on direct diagnosis and prognosis, from WSI or 

tissue microscopic (TMA) for many types of cancer – breast, prostate, lung, etc. The use 

of digital archives of pathology images and easily accessible annotations from electronic 

health records has the potential to transform the fields of pathology and oncology. 

 

 

Dermatology 

 
 

The main clinical tasks of DL in dermatology include differential diagnosis of 

specific lesions, finding lesions among many benign lesions, and helping to monitor lesion 

growth over time. A series of studies demonstrated that CNN could match the performance 

of board-certified dermatologists in classifying malignant skin lesions from benign lesions. 

These studies have sequentially examined an increasing number of dermatologists, 

consistently demonstrating classification sensitivity and specificity that matches or even 

exceeds physician levels. These studies were mainly limited to the task of binary 

classification to distinguish benign skin lesions from malignant skin lesions, classifying 

melanoma from nevi or carcinoma from seborrheic keratosis. 

Recently, this line of work has been expanded to include differential diagnoses for 

dozens of skin conditions, including non-cancerous lesions such as rashes and genetic 

conditions, and incorporates non-visual metadata (e.g. patient demographics) as categorical 

input. This work is catalyzed by an accessible archive of images and AI challenges that 
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encourage teams to measure themselves against predefined standards. Integrating these 

algorithms into clinical workflows allows their services to support other critical tasks, 

including large-scale melanoma detection in patients with multiple lesions and Monitor 

lesions on multiple images to capture transient features such as growth and change. color 

This area remains largely unexplored, with early CNN studies working together to detect 

and monitor lesions. 

 

 

Ophthalmology 

 
 

The field of ophthalmology in recent years has seen a significant increase in AI 

efforts, with dozens of papers demonstrating clinical diagnostic and analytical capabilities 

far beyond current human capabilities. The potential clinical impact is significant, the 

portability of the machines used to examine the eyes means that temporary clinics and 

telemedicine can be used to distribute testing sites to underserved areas. The field relies 

heavily on fundus imaging and optical coherence tomography (OCT) for patient diagnosis 

and management. CNN can accurately diagnose a number of conditions. Diabetic 

retinopathy - a condition in which blood vessels in a diabetic's eyes "leak" and can lead to 

blindness - has been studied extensively. CNN consistently demonstrates physician-grade 

classification from fundus photographs, leading to a system recently approved by the US 

FDA. Similarly, they can diagnose or predict the progression of diabetic central macular 

edema, age-related macular degeneration, glaucoma, excessive visual field loss, blindness 

in children and other diseases. 
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The eyes contain a number of human-incomprehensible features that represent 

important medical information that CNN can gather. Notably, CNN has been shown to 

categorize several cardiovascular and diabetes risk factors from fundus photographs, 

including age, sex, smoking status, hemoglobin A1c, index body mass, systolic and 

diastolic blood pressure. CNN can also detect signs of anemia and chronic kidney disease 

from fundus pictures. This presents an exciting opportunity for future AI studies that 

predict non-visual information from visual images. This could lead to a paradigm shift in 

healthcare, where an eye exam allows you to detect the presence of ocular and extraocular 

diseases, currently limited to human doctors. 

 

 

Surgical applications 

 
 

In procedural areas such as surgery and endoscopy, AI algorithms can provide 

significant utility. Some of the key clinical applications include improving surgeon 

performance through real-time contextual awareness, skill assessment, and training. Early 

studies have begun to pursue these goals, mainly in laparoscopic surgery and video-based 

robotics - some of which propose methods for detecting surgical instruments and gestures. 

Another use case is to recognize distinct surgical stages during surgery, in order to develop 

contextual computer-aided systems. 

 

 

Integration of AI in radiology workflow 
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Although most of the literature is focused on the role of machine learning in 

detection of radiology findings, machine learning also has the potential to improve different 

steps of radiology workflow. 

 
Figure 3 Clinical Applications of Machine Learning in Radiology (Choy et al., 2018) 

 

 
The current cycle is largely driven by the impressive progress of deep learning, a 

branch of machine learning that effectively uses artificial neural networks to solve 

previously difficult problems. Deep learning applications have achieved human or 

superhuman performance in many areas such as image recognition and natural language 

processing (Esteva et al., 2019). An important feature of deep learning is that the neural 

network parameters are tuned in a complex multi-level iterative automatic training process. 

In many cases, no expert level knowledge is used during training, except for the direct input 

and output parameters (e.g. set of pixels and their associated labels), which leads to this 

learning being called "end-to-end" learning. (Esteva et al., 2019). In other words, networks 

learn to jump directly from one end - input - to the other - output - without requiring 

domain-specific expertise in between. The resulting network structures are often so large, 
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often with billions of parameters, and so complex that their behavior cannot be described 

in simple terms, which has led to new explanatory and their interpretability. 

The recent digitization of all kinds of health data and the fact that computers are 

increasingly capable of interpreting some non-medical images and texts almost as 

accurately as humans (He et al., 2015; Wu et al., 2016) enables a multitude of applications 

of AI in healthcare. Much of the recent work on AI for health has focused on applications 

that revolve around image interpretation and natural language understanding. 

In the field of medical image interpretation, one of the most widely published 

studies is by Esteva et al. (2017). The authors demonstrated accurate classification of skin 

lesions using a deep neural network trained in clinical images and evaluated performance 

by comparing the classifications with those performed Presented by board-certified 

dermatologists. This revealed that the network had reached the level of human accuracy; 

however, that validation in a broader geographic area is required, where the shape and color 

of the lesion may vary based on the variation in skin color of each area. Lijens et al. (2017) 

reviewed more than 300 articles using deep learning in medical image interpretation. These 

papers focus on detection, segmentation, or classification tasks. They include X-ray, CT, 

MRI, digital, cardiac, abdominal, musculoskeletal, fetal, dermatologic, and retinal 

pathology imaging analysis. For natural language understanding, the fields of biomedical 

text mining, electronic health record analysis, sentiment analysis on internet-derived data, 

and medical decision support systems have shown results. positive results (Ching et al., 

2018). Furthermore, AI methods can automatically interpret laboratory results (from 

standard blood tests to recent advances in genomics and high-throughput proteins; e.g. 

Gunčar et al., 2018) and time series e.g., electrocardiogram, temperature, oxygen 

saturation, and blood pressure (Attia et al., 2019). AI can also be used beyond the specialist 

hospital level. For example, it can be used from primary care centers to different levels of 
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hospital specialization, including national health institutes or national reference 

laboratories. The role of AI varies depending on the requirements and feasibility of the 

context. 

Figure 4 illustrates the implementation of AI in radiology. Continuous learning 

functions that work normally can be disrupted by sudden workflow changes or big data 

errors resulting in continuous learning AI models exhibiting completely unintended 

behavior after training. 

 

 

 
 

 

Figure 4 Illustration of implementation of an artificial intelligence in radiology. (Pianykh 
et al., 2020) 

 

 
The applicability of these technologies has global potential. A large portion of the 

world's population has access to devices that can use AI-powered supercomputing 
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applications i.e., smartphones, and other devices that store models locally or are connected 

via the Internet to powerful computing clusters (Albertini, 2019). Given the speed at which 

AI-based algorithms can be developed, improved, and deployed, this technology has the 

potential to ensure that first-class medical decision-making is accessible and affordable 

across the globe (Bell et al., 2018). This can help reach people faster and easier, conditions 

can be diagnosed at an earlier stage, which can lead to better health outcomes and lower 

costs. However, this will also require internet connectivity infrastructure and facilities, 

especially in remote and offsite environments. 

While these advances are promising, AI for health also faces several challenges. As 

noted earlier, deep learning models are notoriously difficult to read and interpret, which 

can significantly hinder their acceptance when faced with critical, even life-saving 

decisions. Therefore, interpretability, explanability, and proven robustness (e.g. resistance 

to outliers and adversarial attacks) are important aspects that must be considered for 

reliability. trust. Trust. Although accuracy is reported for many healthcare AI models, there 

is currently a lack of data on efficacy (especially comparative efficacy), cost-effectiveness, 

or safety in clinical settings. 

The data underlying the AI model must also include all relevant regional, gender, 

and age variations to be robust enough for the model to perform well in public health 

settings without errors. In addition, access to health data may be impeded by strategic 

issues of the data owner or custodian, and because the data is sensitive and subject to 

privacy laws depending on the country and region as well as ethical considerations related 

to their collection and use. Thus, access to adequate experimental data is a major limiting 

factor for the predictive performance of models on unpublished data, especially due to local 

regulatory limitations. direction. to access health data. 
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This problem is further complicated because most modern AI applications are based 

on labeled data and supervised learning. In the medical field, labels can usually only be 

given by trained professionals. For example, this contrasts with simple object recognition, 

where photos can be labeled by countless ordinary people. In addition, machine learning 

methods need to account for biases that data (e.g., text and image-based medical data) may 

contain (Caliskan, Bryson, & Narayanan, 2017). In machine learning, models and training 

data must be considered in combination. Models cannot be extrapolated. Instead, they can 

only learn the patterns contained in the training data. This data must be of high quality, of 

sufficient quantity to understand the multitude of parameters of a “data-intensive” 

algorithm, and should theoretically cover all possible scenarios, including exceptions 

(Hägele et al., 2020). 

A thorough understanding of user attitudes and perceptions is necessary for the 

successful implementation of the AI-based system (Romero-Brufau et al., 2020). Due to 

concerns about the reliability and robustness of AI-based tools, healthcare professionals 

still express fundamental concerns about implementation leading to adoption challenges 

(Kaissis et al. Events, 2020). 

The results of a survey conducted by Esmaeilzadeh (2020) on consumers' attitudes 

towards the use of AI-based tools in healthcare indicate that three concerns (technology, 

ethics, ethical, regulatory, and ethical) that directly affect the risks commonly associated 

with AI tools. 

 

 

 

 

 

2.1 Technological Concerns 
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Availability of datasets for training and validating algorithms is limited due to lack 

of standardized electronic medical records and strict legal and ethical requirements to 

protect privacy patient privacy, which leads to a slow adoption rate of AI-based tools 

(Kaissis et al., 2020). The available data is divided into two parts. One part is used for 

training and validating the model. The second part, called the test set or the retainer, is used 

to estimate the final performance of the trained model after it is deployed. The basic 

premise is that the data used to train the model is representative of the data that the model 

will encounter in clinical use. This assumption is often violated in practice, making 

performance on storage an unreliable indicator of future clinical implementation 

performance. 

To develop robust machine learning models, researchers need access to large health 

data sets that fully represent the diversity of data on population characteristics such as age, 

sex, ethnicity, ethnic, ethnic origin, health status, etc. and imaging characteristics such as 

device manufacturer, imaging parameters, patient position. and so on Most of the datasets 

available in medical imaging do not meet these requirements. Government policies such as 

the General Data Protection Regulation (GDPR), the Health Insurance Information 

Portability and Accountability Act (HIPAA), the Personal Data Protection Act of 

Singapore, etc 

Multiple medical data sets are distributed natively across multiple networked 

storage devices owned by different organizations. In a traditional machine learning 

environment, these datasets must be merged into a single repository before training the 
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models. Moving large volumes of data over the network poses a number of logistical and 

legal challenges, addressing potential biases. 

Generalization refers to the ability of a predictive model to perform well on unseen 

data. To test the generalizability of a model, the data is usually divided into a training set, 

used to tune the model's parameters, and a test set used to evaluate whether the model 

generalization or not and whether or not to be considered representative of the reference 

population. Generalizability can then be assessed by assessing whether the test is truly 

representative of the reference population. The data used to train the model must be 

representative of the data that the model will encounter in clinical use. This assumption is 

often violated in practice and makes storage performance an unreliable indicator of future 

clinical deployment performance. The poor generalizability of models to diverse patient 

populations is one of the biggest barriers to the adoption of artificial intelligence and 

machine learning in healthcare. One of the reasons for poor generalization is the difference 

in image characteristics between images from training sites and deployment sites. This 

variation, also known as dataset change, can occur due to differences in hospital 

procedures, device manufacturers, image acquisition settings, disease manifestations, 

patient populations, etc from another hospital. The generalizability of a model, i.e. the 

ability to accurately predict the occurrence of events when exposed to a new set of data, 

depends on the balance between the bias and variance of the model. Machine learning bias, 

if unchecked, increases training and generalization errors by oversimplifying model 

assumptions. On the other hand, variance occurs when small variations in the training set 
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lead to a significant increase in the generalization error. Several important problems arise 

when trying to balance bias and variance. 

Machine learning is a real-world field that requires simulations to verify 

generalization. It is increasingly possible to understand how process automation can 

facilitate the daily lives of healthcare professionals, from the simplest to the most complex 

(Obermeyer & Lee, 2017; Rajkomar et al., 2019). The goal of most machine learning 

research is to one day apply models in a real-world context, which means that algorithms 

must be able to generalize to new data sets. 

Types of generalization: 

 

a. Local generalization: when the goal is to predict the outcome using data from the same 

location as the training set. Also known as internal authentication or reproducibility 

(Steyerberg, 2019). 

Limitations: New data may not follow the same pattern over time as the data used in model 

training: new interventions may be introduced after the training set is collected and the 

New diseases may appear. 

b. Extrapolation: Challenges increase when the goal is extrapolation, i.e. applying the 

model to a different domain than the domain used to train the algorithm. It is also known 

as external authentication or portability (time, geography, method, and spectrum) 

(Steyerberg, 2019). 

Limitations: Algorithms should be applied to reasonably related populations, that is, 

populations in which there are similar relationships between predictors and outcomes. 

However, this is difficult to test empirically and may increase prediction error. Another 
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concern is that machine learning models can break easily when put into actual use, which 

affects performance. As an example, researchers have shown that the performance of a 

deep learning model used to diagnose pneumonia on chest X-ray films is significantly 

lower when used to evaluate chest X-rays- optics from different hospitals (Zech et al., 

2018). 

The performance of the deployed machine learning model degrades over time. This 

phenomenon is known as model degradation. This happens due to changes in the 

underlying data. Detecting model degradation requires continuous monitoring of 

deployment-time performance against human-labeled subsamples of data. If performance 

drops below a predefined threshold, an alarm is triggered and the model is retrained or 

adjusted on the most recent data. This recycling can also be performed periodically as part 

of routine maintenance. 

Measuring robustness can be done from different perspectives or a combination of 

 

them: 

 

1. In the input space, use both training and test data samples. Distribution 

distance/dissimilarity or mismatch can be measured as illustrated in. The measurement of 

training data and bias can suggest how difficult a scenario is for a model in terms of 

maintaining accuracy or explaining its diminishing accuracy. Furthermore, the 

representativeness of the data (laziness or heterogeneity) can be measured in both the 

training and test datasets. One particular powerful scenario is noise in data labels. A model 

can be considered robust if its accuracy does not change much when trained with a high 

level of label noise. 
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2. In the feature space: Modern AI solutions make extensive use of deep learning 

architectures. These architectures typically learn a feature space from the data, making it 

more feasible to use to measure the similarity of training and test data. 

3. Model Output: Shuffle in the model output leads to a significant mismatch between the 

training and test data. Model sensitivity to increasing training to test divergent data/features 

is a common approach to determine model robustness. 

Therefore, we can define certainty as the ratio between the noise of the model 

output and the dissimilarity of the training test data. Endurance assessment is of prime 

importance in medical applications, as input test data disruption is a frequent challenge in 

real-world medical AI systems. 

 

 

2.2 Ethical Concerns 

 

Health data is one of the most sensitive (Vayena, Blasimme and Cohen, 

2018). Patient confidentiality is of paramount importance, as failure can affect patient 

psychology and damage their reputation (Dawson et al., 2019). Trust can only be created 

by explainable AI with a deep understanding of the algorithmic decision-making process 

(Scherer et al., 2020). 

Concerns may arise due to unrepresentative data and AI bias due to social 

discrimination (such as poor access to health care) and patterns small groups (such as 

minorities) (Reddy, Fox and Purohit 2021). Essentially, the training data should contain a 

meaningful representation of diverse populations. One study indicates that incomplete and 
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non-representative data sets in AI models can lead to inaccurate predictions and medical 

errors (Reddy et al., 2019). Algorithmic systems play an important role in guiding decisions 

that affect the delivery of healthcare to patients. It is therefore desirable that these systems 

be free from social bias and that their decisions be fair and equal. Unfortunately, many 

existing datasets reflect the biases of the companies they represent, and it is difficult to 

detect and remove biases inherent in the training data. 

The topic of Trusted AI has been debated many times in the scientific community, 

from journals to conferences (Pupic et al., 2022; Lockey et al., 2021; Santomartino and Yi, 

2022). Distrust in AI is thought to stem from uncertainty about the value it can actually 

bring to clinical practice (Rylands-Monk, 2022). This uncertainty leads to a long list of 

common myths, perceived lack of transparency, and lack of formal education about AI. In 

principle, a predictive model is considered fair if it does not discriminate against patients 

on the basis of sensitive variables such as gender, ethnicity, disability, income, etc. 

However, putting this seemingly simple principle into practice is difficult. 

Learning hidden features (also known as confounding factors) can lead to 

algorithmic bias that can produce unreliable predictions when the algorithm is applied on 

an external test set from a population with different hidden feature distributions. In 

addition, algorithmic bias can occur when an algorithm has been trained with data that only 

represents a subset of the real-world data that it is expected to. This has the potential to 

lead to predictive outcomes that are detrimental to everyone and are undesirable by the 

model creators (Chen et al. 2019). For example, an AI system may perpetuate a racial bias 

because the bias already exists in historical data. This may reflect differences in biological 
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vulnerability to disease as well as differences in social resources. Identifying algorithmic 

biases is no small task, requiring specialist domain knowledge in the targeted use case 

scenario as well as expert knowledge of identification methods. and minimize algorithmic 

errors. Not only in healthcare but also in other AI application areas, the identification of 

learned latent characteristics, especially sensitive social factors, is of particular importance, 

to ensure fairness, avoid discrimination and unreliable predictions (Holstein et al. 2019). 

The use of machine learning algorithms for clinical decision-making should focus on 

demonstrating a clinically important improvement in patient outcomes rather than relying 

solely on performance measurements such as surface area. area under the curve and 

accuracy. It is extremely important to ensure that all genders, ethnicities and age groups 

are correctly represented, if the AI-based product is then applied to multiple patients. 

Statistical accuracy is not necessarily equal to clinical accuracy. To address these 

challenges, technologists must address the limitations of machine learning algorithms and 

ensure the quality control of their application in diverse clinical environments and patient 

populations. and document and state their limitations. 

 

 

Bias definition 

 

Bias can be thought of as the systematic deviation of the result from the true 

estimate. This can happen in AI models if the training database is significantly different 

from the target population (defined by use) and can happen in the accuracy assessment of 
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model if the database check is incomplete. As a result, algorithms may not be beneficial, 

such as for people whose data is not represented in the dataset. 

 

 

Potential sources of bias 

 

Knowledge of the intended context (field expertise) and the use of a model will 

inform the identification of sources of bias. Potential sources of bias in healthcare 

algorithms can arise at preprocessing (data collection, data preparation) and post- 

processing (model deployment and evaluation). 

 
 

Pre-processing stage: 

 

● Representation bias: If the targeted user group and the targeted patient group differ 

between the data used for the development process and the data is intended for. 

● Learning hospital-specific features: Hospital departments often have a well-defined area 

of responsibility and rarely deal with cases outside of this area. Different departments also 

often use different medical devices. Learning characteristics such as hospital-specific 

parameters can bias the predictions. 

● A ‘case-control’ database design could over-inflate measures of accuracy- i.e. if the data 

from a group of patients known to have a given condition is combined with the data from 

a group who do not, cases where there may be uncertainty and in which the model may not 

perform as well are excluded. The test database should ideally comprise a non-selected 

group of individuals reflecting the intended use population as closely as possible. 
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● Measurement bias: If variables were measured with different methods of different 

accuracies i.e., a positive result of a disease is more likely to be truly positive when it was 

measured with test A, rather than test B. 

● Label bias: Annotation and label bias can arise when data was labelled by different 

practitioners with different levels of experience 

● Assigning ground truth- if the ground truth (reference standard) in the test set is 

established by raters who have knowledge of the outcome of the AI model in the test group, 

this could inflate measures of accuracy. 

● ‘Over-curation’ of the data- e.g. if poor-quality MRI scans are excluded, measures of 

accuracy may not reflect the real-world application where noise or artefacts may be 

common. Similarly, if cases with missing data are excluded from the population, the 

accuracy of the model in the real-world setting may be lower than in the test setting. 

● Issues related to data integrity & data quality: Improper procedures on data inclusion and 

exclusion, input and output variable selection, pre-processing methods (data encoding- 

decoding formats, data compression and encryption, outlier and missing value treatment). 

● Lack of standardized protocols and tools for data reproducibility (Who, When, Where, 

How, etc.), lack of interoperable data interfaces to collect and integrate diverse data types 

 

 

 

Post-processing stage: 
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● Historical bias: An algorithm might be biased by social factors especially when training 

data was collected through services, surveys, or social media that are predominantly used 

by a certain social group (defined by ethnicity, religion, gender, …). 

● Representation bias: An underrepresentation of minority or marginalized social groups 

in the training data can lead to unreliable predictions on underrepresented social groups. In 

this case, algorithmic fairness is not guaranteed. 

● Algorithmic tuning: When business heuristics are applied to model outputs e.g. 

differential tuning of performance parameters in order to optimize for chosen business 

logic (e.g. differential diagnosis based on age, gender, ethnicity, etc.) 

● Aggregation bias: arises during model building. If there are two or more distinct 

populations that are inappropriately combined. In that case, the population of interest is 

heterogeneous and a single model is unlikely to suit all minority groups. 

● Evaluation bias: occurs during model iteration and evaluation. It can arise when the 

testing or external benchmark populations do not equally represent the various parts of the 

population it is applied on. Evaluation bias can also arise from the use of performance 

metrics that are not appropriate for the way in which the model will be used. 

● Deployment bias: occurs after model deployment, when a system is used or interpreted 

in inappropriate ways. 

 

 

Federated learning as Bias error mitigation method 
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To avoid data bias and thus model bias, the training dataset must contain many 

features, which is difficult in healthcare, as it is often not possible to merge datasets from 

different organizations. Federated learning is a machine learning method that allows to 

train models on decentralized pools of data. The configuration consists of several local 

nodes and one global node, where the gradients are calculated locally on the local nodes 

and they are combined into a global model. Therefore, there is no need to merge data sets 

for medical applications. This allows for the collection and use of training datasets, which 

are often not shareable due to data privacy concerns. Larger, more comprehensive datasets 

can be used to train models, such as geographically unbiased. Some of the most well- 

known myths about AI in healthcare are that it can replace the work of radiologists, or even 

that AI will dehumanize interactions with patients. These misconceptions, especially seen 

among medical students, may stem from the educational gap, as observed by a recent 

systematic review showing a lack of formal training on AI in general, while demonstrating 

a generally positive attitude towards AI in radiology (Santomartino and Yi, 2022). 

However, universities and healthcare associations are gradually rolling out formal training 

in addition to the already extensive portfolio of resources available for self-education, such 

as placement reports, seminars, etc. conferences and blogs dedicated to explaining AI. 

 

 

 

 
2.3 Regulatory Concerns 
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Perceptions of a lack of transparency may stem from radiologists' doubts about 

aspects such as AI being used, how AI is trained and validated, or what steps the company 

takes regarding safety side (Rylands-Monk, 2022). However, there are many systems in 

place to ensure that AI software is well developed, such as IEC and ISO standards for 

medical software; regulatory agencies, such as the FDA, ensure that products can be 

marketed and therefore used in clinical settings; or specific regulations and laws related to 

the protection of patient information, such as HIPAA, that manufacturers must comply 

with. 

The main regulatory concerns are the governance of autonomous AI systems, clear 

accountability and lack of responsible rules for the use of AI, and the lack of formal 

industry standards for the use of AI and performance evaluation (Dwivedi et al., 2019). 

According to the guidance published by the EU High-Level Expert Group on AI, ethical 

guidance presented in April 2019 for trustworthy artificial intelligence, AI must be legal, 

ethical and robust (European Commission, 2019). 

A well-developed medical AI product has the potential to have tremendous clinical 

impact. In order to be open to the market, development must first follow clear legal 

roadmaps and practices. 

The regulation of AI in radiology is increasingly associated with the medical device 

concept as reported in studies (Muehlematter, Daniore & Vokinger, 2021). AI-based tools 

in medical imaging is recognized as "Software as a Medical Device (SaMD)" by regulators. 

The management principles of AI-based medical devices are comparable to 

managed software such as medical devices. However, there are specific additional 
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considerations such as continuous learning capabilities, level of human intervention, model 

training, retraining, etc. for AI-based medical devices should be carefully considered and 

handled. All activities related to the design, development, training, validation, recycling 

and deployment of AI-based medical devices must be performed and managed in 

accordance with a standards-based quality management system (QMS) ISO 13485 

standard. 

The below Figure 5 illustrates the process of developing and deployment of the AI- 

based medical devices. 

 

 

 

 

 

 

 

 

 
 

Figure 5 The AI Lifecycle (Dreyer and Coombs, 2020) 

 
 

The dataset consists of different inputs and features/attributes selected for the AI- 

based medical device to produce the corresponding outputs. This can be in the form of 

diagnostic images, patient history records, physiological signals, medication records, 

healthcare professional handwritten texts, literature reviews, and more. The specifications 

or acceptance criteria for the selection of input data and features/attributes should be 
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defined. Where pre-processing (e.g. signal pre-processing, image scaling) is required, this 

procedure should be clearly defined and included in the submission. An explanation should 

be provided for the preprocessing steps applied to the input data. 

The source and size of the training, validation, and test datasets must be provided. 

Information about data set labeling, management, annotation, or other steps should be 

clearly presented. A description of the cleaning of missing datasets and data induction 

should be provided. The developer must also ensure that there is no duplication in the 

training and validation datasets. Rationale for the relevance and completeness of the 

selected data set and the factors that could potentially influence the outputs must be 

provided. In addition, any potential trends in the selection of training and validation 

datasets must be addressed and managed appropriately. 

A description of the machine learning model (e.g., convolutional neural network) 

used in an AI-based medical device, including any underlying models (e.g., Inception V3 

model) must be provided. The suitability of the model for the intended use of the AI-based 

medical device should be demonstrated. Any limitations of the model and, if possible, 

mitigation measures to address the shortcomings should also be explained. Model 

evaluation should be performed using a separate test dataset from the training dataset. The 

parameters (e.g. classification accuracy, confusion matrix, log loss, area under the curve 

(AUC)) selected to evaluate the performance of the selected machine learning model must 

be provided, including model evaluation results. 

Based on the performance specifications of the AI-based medical device, the test 

protocol and test report should be provided. Information on control measures should be 
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provided to detect discrepancies/abnormalities. Any limitations of the medical device and 

AI-based operating system should be clearly evaluated and also communicated, if any, to 

the user in the instructions for use or product labeling. Performance specifications such as 

instrument accuracy, specificity, and sensitivity must be provided (e.g. 90% accuracy, 91- 

93% sensitivity, 95% specificity). Verification and validation report(s) must be provided 

to support this performance claim. The presence of a valid clinical association between the 

output of an AI-based medical device and its target clinical status must be demonstrated by 

appropriately designed clinical studies (Health Sciences Authority, 2019). Device 

workflow, including how the outputs are used, the proposed or planned workflow should 

be presented and explained when deploying the equipment. When there is human 

intervention in the human system in the loop, the workflow must specify the level of 

intervention and the workflow step(s) for that intervention. In the event that data is 

collected after the implementation of an AI-based medical device (fixed version) and these 

data sets are used to recycle subsequent samples of the AI-based medical device, 

information about the training data update cycle interval will be provided. If a new set of 

data is collected that changes the original specifications and performance of your device, 

you must notify the HSA of the change. As with other software, change notifications will 

be required for changes to registered AI-based medical devices. This includes any changes 

to performance specifications, input data types, device workflow, level of human 

intervention, AI model selection, and more. The decision stream also applies to AI-based 

medical devices. For post-market traceability purposes, the exact version of the AI-based 

medical device should be provided and an explanation of how the version number is 
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assigned and retrieved (Health Sciences Authority, 2019). The AI-based medical device 

with continuous learning has the potential to change behavior after deployment. The 

manufacturer shall define the learning process and shall have appropriate process controls 

in place to effectively control and manage the learning process. For example, appropriate 

quality checks are needed to ensure that the quality of the training dataset is equivalent to 

the quality of the original training dataset. Authentication procedures must be integrated 

into the system to closely monitor the overall learning and development of the AI-based 

medical device performance after the learning process. This is important to ensure that 

learning does not affect the defined specifications or output of the AI-based medical device. 

Because AI-based medical devices with continuous learning can automatically change 

behavior after deployment, manufacturers need to ensure that robust process controls are 

in place. This can ensure that the performance of the AI-MD does not degrade over time 

(Health Sciences Authority, 2019). 

Once AI-based medical devices are deployed in the real-world environment, active 

monitoring, review and tuning are necessary. Developers and distributors should establish 

a process in collaboration with the implementers and users to ensure traceability and also 

implement mechanisms to monitor and review the performance of the AI-based medical 

device deployed in clinical setting. Such monitoring could also be in the form of 

autonomous monitoring embedded in the system. A robust surveillance model to ensure 

that the AI-based medical device especially those with continuous learning algorithms 

remain accurate and to prevent any concept drifts (Health Sciences Authority, 2019). 
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Ebrahimian et al. (2022) focuses on FDA-regulated AI algorithms. They reviewed 

127 managed software in an effort to rank the information available and reported. They 

record (if any) the number of studies included along with other parameters, for example, 

specificity, specific receptor activity area under the curve, and sensitivity. They report the 

number of rejections. FDA-regulated physicians increasing from 2008 to 2021. Their 

critical review concluded that incomplete public data on validation/testing datasets in 

various algorithms cannot justify applications in healthcare because it cannot eliminate 

generalizations and/or bias rates. 

The review identified three important areas for intervention: ethical issues, 

international regulatory frameworks, and bottlenecks in regulatory development. Ethically, 

areas of intervention have been identified that, in addition to those using traditional medical 

technology, include new areas due to the specificity of AI related to the production, datasets 

and avoid bias in them. Furthermore, regulatory studies have shown that these emerging 

regulatory approaches are inconsistent and different in the case of the United States, 

Europe, Canada or other countries. Different approaches have been used to address 

emerging issues, such as cybersecurity in medical devices. Studies have revealed a number 

of important issues and in particular the need to ensure a well-defined and rigorous 

roadmap for the approval and maintenance of AI-based medical devices. Among the 

recommendations for these issues, greater transparency of the approval and post-approval 

processes as well as the design of a full and open access database specifically for these 

MDs were proposed. Bottlenecks have also been identified specifically with regard to 

workload, suggesting that regulating it without scientific principles can be more dangerous 
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than no regulation at all. References are also made to incomplete public data on 

validation/testing of datasets in various algorithms that are not guaranteed for healthcare 

applications as they cannot be excluded apart from generalizability and/or bias rate. More 

importantly, limitations and vulnerabilities emerge from these assessments. It is clear that 

they limit themselves to the review of regulatory tests that do not include an international 

approach. For example, some significant experience not considered, such as the NMPA 

experience, can act as a legal mediator between certain positions. Also related to ethical 

aspects, it is desirable to better share important experiences in the production of documents, 

such as those available in Europe. 

When it comes to AI-based medical devices, the issue of bias is even more 

concerning (Giansanti, 2022). Research by Allen et al. (2021) goes this way. They report 

that trading algorithms are influenced by gender, ethnic, and social biases. This shows 

significant and dramatic implications for the design of healthcare algorithms. They also 

report that it is important to prevent bias in healthcare through strong stakeholder 

engagement to ensure robust and unbiased algorithms and datasets (Belenguer et al. , 

2022). 

Although AI technologies are attracting considerable attention in medical research, 

their implementation in real life still faces obstacles. The first obstacle comes from 

regulations. Current regulations lack standards for assessing the safety and effectiveness of 

AI systems. To overcome the difficulty, the US FDA tried to come up with the first 

guideline for evaluating AI systems. The first directive classifies AI systems as "general 

healthcare products", which are loosely regulated as long as the devices are intended for 
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general healthcare purposes only and pose little risk to users. The second orientation 

justifies the use of real-world evidence to access the performance of AI systems. Finally, 

the guide clarifies adaptive design rules in clinical trials that will be widely used to evaluate 

the performance characteristics of AI systems. Soon after these guidelines were released, 

Arterys' medical imaging platform became the first FDA-approved deep learning clinical 

platform that can help cardiologists diagnose heart disease. 

The second obstacle is data exchange. To function properly, AI systems need to be 

trained (ongoing) using data from clinical studies. However, once an AI system is deployed 

after initial training with historical data, continuous data feeding becomes an important 

issue for further system development and improvement. 

The current healthcare environment discourages sharing of system data. However, 

a healthcare revolution is underway to promote data sharing in the United States. Reform 

begins with the revision of the payment system for medical services. Many payers, mainly 

insurance companies, no longer reward doctors by shifting treatment volume to treatment 

outcomes. In addition, the payer also reimburses a drug or treatment based on its 

effectiveness. In this new environment, all participants in the health system, doctors, 

pharmaceutical companies and patients, are encouraged to collect and exchange more 

information. Similar approaches are being explored in China. 

 

 

2.4 Federated Learning Approach 
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The term “federated learning” was put proposed by McMahan et al. in 2016: "We 

call our method FL because the learning tasks are solved by a loose association of 

participating devices (what we call clients) coordinated by a central server." FL was 

originally defined as a distributed ML method that uses a lot of user data to train a central 

model (Hu et al., 2021). Federated learning was first introduced by Google as a 

decentralized distributed machine learning model (Chowdhury et al., 2022). 

The goal of FL is to implement efficient distributed ML among many participants 

or many computing nodes on the principle of ensuring information security when 

exchanging big data, protecting mobile data and privacy as well as security ensuring 

compliance with the law. FL uses classic distributed ML framework and adopts distributed 

ML technology, but central server control is different from distributed ML's control. 

Researchers can extract and use data without breaking laws and regulations. In a broad 

sense, FL refers to a method by which data owners can achieve model training without 

downloading the data locally. The FL model is based on a local model uploaded by each 

participant, then the generic training model is sent back to each participant to achieve the 

same results as traditional ML without breaking any laws giving FL a privacy advantage. 

Compared with traditional machine learning, FL algorithm consists of three main 

parts, namely learning algorithm and training method, data privacy protection mechanism 

and user incentive mechanism. The learning algorithm and training method refer to the 

iterative process of a set of servers after each client has trained the local model. It uses a 

privacy protection mechanism to protect the security of data and uses an incentive 

mechanism to incentivize customers to participate in generic model training. Therefore, the 
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quality of of the FL algorithm is closely related to three aspects: (1) the quality of the 

learning and training model, and (2) the quality of the privacy protection mechanism. links 

and (3) quality of incentive mechanisms. 

 

 
The design and training quality of the learning model 

 

The FL algorithm is designed in two parts. One is for client-side local learning and 

the other is for server-side synthesis. The quality of learning, as measured by accuracy, 

precision, etc., is highly dependent on the design of the model and the training between the 

client side and the server side. 

 

 

Quality of federated privacy 

 

FL training can maintain local data, which improves privacy quality compared to 

centralized machine learning. In order to protect data privacy, the FL formation process 

must also ensure the following two facts. 

(1) The trained model passed during training contains information about the original data. 

 

Therefore, we must avoid inferring the original data from the trained model. 

 

(2) The server side only retrieves the agreed information from the client side and does not 

take any other redundant information. Therefore, it must be ensured that only intermediate 

results are submitted without additional information 
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Quality of federated privacy protection 

 

FL's training process can maintain local data, which improves security compared 

to centralized machine learning. In order to protect data privacy, the FL formation process 

must also ensure the following two facts. 

(1) The trained model passed during training contains information about the original data. 

 

Therefore, we must avoid inferring the original data from the trained model. 

 

(2) The server side only retrieves the agreed information from the client side and does not 

take any other redundant information. Therefore, it must be ensured that only intermediate 

results are sent without additional information. 

 

 

Quality Driven by an Insensitive Mechanism 

 

The effectiveness of machine learning also depends on the quality and quantity of 

data used for training (Liu et al., 2020). While FL ensures that the data remains local, the 

customer must provide their resources, such as computing power, data samples, 

communication costs, etc. These factors may prevent a client from participating in FL 

without compensation. In FL, customers with large volumes of high-quality data often 

cannot achieve higher returns than training alone, and customers with small amounts of 

data are more interested in participating. Therefore, it is necessary to use an incentive 

mechanism to maximize the common good, ensure that private interests are not 

compromised, and to encourage more customers with high-quality data to participate. 

The standard federated learning model is: 
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i) multiple client sites, each containing a local dataset that remained at the client 

site during training, connected to a global server; 

ii)  A global model is initialized in the global server and the weights of this global 

model are transferred to each local client location; 

iii) Each customer site trains a local version of the global model on its respective 

dataset, then sends the updated model weights to the global server; 

iv) The global server updates the global model by aggregating the weights it 

receives from local clients and then transmitting a copy of the updated global 

model to each client. The process that occurs between steps i to iv is called a 

loop, and during link formation, steps i to iv are repeated for several rounds 

until the population sample converges to a minimum. The most important 

aspect of this process is step iii. During this phase, all data used for training is 

kept strictly on local customers. The only information that is passed between 

the client and the server is the weight update. This allows multiple sites that 

aggregate their data to train synthetic models while maintaining data privacy. 

In step iv, the algorithm is used by averaging the association to sum the weights. 

In this algorithm, each update weight is weighted according to the size of the 

client dataset it comes from, relative to the size of the other client datasets. The 

aforementioned client-server topology is known as centralized federated 

learning. Another topology found in the study is decentralized federated 

learning, in which clients communicate between peers without a central server. 
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Federated learning can be divided into three main subtypes: horizontal federated 

learning, vertical federated learning, and transfer federated learning. These three subtypes 

follow the basic model of federated learning, which is a decentralized collection of data 

through the use of weight sharing and aggregation across multiple global clients and 

servers. They differ in how different their data sources are. In Horizontal federated 

learning, each client's website has different users in their data, but these users all share the 

same functionality exploited by the network. In Vertical Federated Learning, users are the 

same across all client sites, but each customer site's data functions differently, so the same 

user will be analyzed by different ways depending on customer's site. In Transfer Federated 

Learning, customer sites don't have common users or features, but their dataset tasks are 

still small, so grouping them together often leads to network training. Popular federated 

learning platforms are: OpenFL, PySyft, Tensorflow-Federated, FedML, Flower, NVIDIA 

Clara, Personal Health Train (PHT). 

Federated Learning establishes a learning model based on distributed data sets. 

Unlike traditional machine learning, the algorithm will be implemented in the hospital's 

servers, which keep patient data in the facility. The raw data is distributed across client 

devices and forms a shared model on the server by aggregating locally computed updates, 

as depicted in Figure 6. Therefore, the algorithms Machine learning, such as deep neural 

networks, is trained on some local dataset contained in the local edge intersection (Ng et 

al., 2021). In turn, the algorithm will be continuously trained on local data. Such 

configurations will be deployed in multiple hospitals across regions using a centrally 
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deployed cloud-based algorithm. The vendor then collects the algorithm changes and 

performs retraining to improve performance (Ng et al., 2021; Rieke et al., 2020). 

The comparison between traditional and federated machine learning can be 

explained in Figure 6. 
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Figure 6 Comparison of Traditional Vs Federated Machine Learning (Ng et al., 2021; Rieke et al., 2020) 
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The benefit of federated machine learning is that the data resides on the hospital 

campus. Installation at multiple sites will provide the necessary data delivery. Federated 

learning will address concerns about data privacy protection, distributed data collection. 

Vendor-hosted central algorithms will ensure that all algorithms installed at multiple 

locations are trained and updated with distributed data (Naseriet al., 2021; Liu et al., 2021; 

Sohn and Kwon, 2020). 

Data privacy and effective communication are the two main drivers of federated 

learning adoption. Data privacy is preserved during federated learning because no raw local 

data leaves the device. In addition, federated learning achieves higher communication 

efficiency by only exchanging model parameters or slopes. High data privacy and 

communication efficiency also promote scalability. As a result, many clients are motivated 

to participate in the training process. 

Advances in genetics and biology have led to an increase in medical knowledge, 

which in turn has resulted in tremendous advances in diagnostic and therapeutic options. 

Due to the increasing age of the population and the patient's comorbidities, the volume and 

depth of information required to provide appropriate medical management has increased 

dramatically. As a result, electronic health records (EHRs), as a repository of this 

information, continue to evolve. EHR's high speed, authenticity, volume, and diversity 

qualifies as big data. The EHR contains fragmented data elements related to each patient's 

medical history. Linking this information is necessary to enable clinicians to use it for 

clinical purposes, including but not limited to predicting the risk of different diseases or 

the likelihood of adverse outcomes. EHRs have become an important source of real-world 
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healthcare data that has been used to unify important biomedical research, including 

machine learning research. While providing a large amount of patient data for analysis, the 

EHR contains systemic and randomized biases across the globe as well as per hospital that 

limit the generalizability of the results. Federated learning is a viable method for 

connecting healthcare organizations' EHR data, allowing them to share their experiences, 

not their data, with guaranteed privacy. In these cases, the performance of the ML model 

will be greatly improved by iterative improvements in learning from large and diverse 

medical data sets. Several tasks have been investigated in fedearated learning in healthcare, 

e.g. patient similarity learning, patient representative learning, phenotypes and predictive 

models. 

Federated learning has also activated the model. Predictions are based on a variety 

of sources, which can provide clinicians with additional information about the risks and 

benefits of treating patients earlier (Kashani et al., 2020). 

Recently, a study on federated learning conducted by Linardos et al. (2021) showed 

that privacy and robustness have increased compared to traditional centralized learning. 

Studies performed by different researchers (Stripelis et al., 2021; Yang et al., 2021; 

Linardos et al. 2021; Sarma et al., 2021; Dayan et al., 2021; Sheller et al., 2020) 

demonstrate a federated semi-supervised learning framework that can capture valuable 

insights from customers with only unlabeled data. The privacy of all patients is preserved 

because they do not need to share their own databases to collaborate on the joint training 

of models that improve the generalizability (Yang et al., 2021). 
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Since patient data sharing is not required to achieve full learning in federated 

learning, this overcomes technical and data ownership issues and helps meet requirements 

of privacy regulations (e.g. the European General Data Protection Regulation (GDPR) and 

the US Health Insurance Information and Accountability Accountability (HIPAA)) 

therefore facilitate collaboration between multiple organizations (Sheller et al., 2020). 

Salam et al. (2021) demonstrated that the federated machine learning model has 

better predictive accuracy and attenuation, but higher execution time than the traditional 

machine learning model. The study compared the effectiveness of federated learning with 

traditional learning by developing two machine learning models to detect COVID-19 using 

chest X-ray (CXR) images of patients. patients infected with COVID-19. 

In another study validating the federated learning model using actual clinical 

prostate imaging data (Sarma et al., 2021), successfully demonstrated in 3 institutions, 

reported that federated learning improved performance on both organizationally and 

externally maintained test data sets, allowing for greater generalizability in clinical use 

2021). Compared with conventional federated learning (FL), clustered federated learning 

(CFL) is an emerging concept and is expected to better cope with differences in the 

distribution of data from different sources (Qayyum et al., 2021). 

Federated learning investigated in the field of neuroimaging by collaborative 

learning a global brain age prediction model (Stripelis et al., 2021). Based on our literature 

search, we have determined that federated learning has been explored in many cancer 

studies, where the goal is to compare federated learning with data analysis methods, 

whether to focus normally on performance or develop new methods to address the various 
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challenges encountered using federated learning. Learning (e.g. domain name change, 

missing label etc.,). In the most common training scenario, researchers simulate a federated 

learning environment by taking an existing dataset and dividing it into subsets using a 

partitioning scheme, where each subset represent a client in an federated learning group. 

Federated learning has been applied to brain tumor detection in several studies. In 

the study by Chowdhury et al., (2022), the authors used Kaggle's "Brain MRI 

Segmentation" dataset to segment low-grade gliomas (Muehlematter, Daniore, & 

Vokinger, 2021), dividing the whole datasets at 5 “customer” locations. The authors 

designed a network that achieves state-of-the-art results in the glioma segmentation task, 

and these results remain consistent when applied to the federated learning framework. In 

the paper by Sheller et al., (2019), two distinct federated learning environments for brain 

tumor segmentation were simulated using the BraTS dataset (Menze et al., 2015). In both 

environments, the federated learning model was compared with two other cooperative 

learning techniques and outperformed both. It also achieves almost 99% of the DICE scores 

obtained from a model trained on the entire dataset without hierarchies. Similarly, Sheller 

et al., (2020) demonstrated comparable performance between the linked and shared mean 

for brain tumor segmentation on the BraTS dataset (Menze et al., 2015). Sheller et al., 

(2020) also shows how federated learning improves the learning of each participating 

organization both in terms of performance on local data and performance on data from 

unknown domains. In the paper by Sheller et al., (2019a), the authors presented a 

comparison between federated learning and individual training of 3D-Unet models for 

glioblastoma segmentation in 165 images multiparameter structural magnetic resonance 
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imaging (mpMRI). Federated learning has been proven to deliver superior quantitative 

results. 

Additional studies have explored federated learning on many other types of cancer, 

including those that are less common. Some of the types mentioned in the use cases we 

looked at include: skin cancer, breast cancer, prostate cancer, lung cancer, pancreatic 

cancer, anal cancer, and thyroid cancer. 

 

 

Federated learning for COVID-19 

 
 

Since the outbreak of COVID-19, the global pandemic disease in 2020, it has 

attracted attention as a new research topic in the field of medical AI. Common symptoms 

in patients with COVID-19 are lung tissue damage, leading to cell destruction and lung 

fibrosis. The results of chest X-rays or CT scans are regularly reviewed to determine the 

stage of the disease, and various research trials are underway to classify medical images 

collected by machine algorithms. Through analysis of chest images, COVID-19 symptoms 

are effectively differentiated from difficult to classify pneumonia, and at the same time, 

protection of personal information by association learning technique is also observed. 

Zhang introduced a dynamic association-based learning algorithm for diagnosing COVID- 

19 infections, using medical imaging datasets collected from Kaggle and GitHub (W. 

Zhang et al., 2021). A test was conducted with a framework in which three clients 

participated in training and tested accuracy and convergence time were evaluated using 

three different training methods: GhostNet, ResNet50 and RestNet101. Save et al. (2020b) 
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recently applied a federated learning-based Covidnet algorithm to distinguish between 

chest X-ray images of pneumonia patients and COVID-19 patients. Although inferior to 

ResNet models, it exhibits similar classification performance as MobileNet, a lightweight 

model, and shows the ability to analyze medical images through federated learning. Unlike 

the previous two studies, Dayan's team demonstrated the benefits of federated learning 

through the involvement of multiple medical institutions to analyze COVID-19 patient data 

(Dayan et al., 2021). A total of 20 institutions participated in the creation of the federated 

learning health data classifier model, which has the same architecture as the concept shown 

on the right in Figure 6. Compared to the classifier case given created with a local 

organization, using 20 organizations showed an average performance improvement of 

13.9%. Kumar and associates. (2021) also developed a framework that unifies capsule 

networks and blockchain-based federated learning for the diagnosis of lung CT images of 

patients collected from different hospitals. Data sets were collected from three hospitals 

and performance in terms of sensitivity and specificity was improved by more than 7% 

compared to existing benchmark machine learning models. Based on the above test results, 

the performance degradation is not significant compared to centralized machine learning 

when federated learning algorithms consider PHI protection for COVID-19 diagnosis. 

Since centralized machine learning performs better when using the same amount of data 

for training, federated machine learning can use more data to achieve higher performance 

with the benefit of training through Customer data is distributed. Various mutated COVID 

viruses are emerging in countries around the world, and it is important to form a topology 

based on understanding the data collected by each organization. While many studies in the 
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medical field point to the benefits of adopting federated learning, there are still research 

issues that need to be addressed for better use. 

 

 

2.5 Challenges in Federated Learning 

 

Although federated learning has its advantages, it does not solve all the problems 

inherent in learning about medical data (Rieke et al., 2020). In the study published by Xu 

et al., (2021), it was concluded that successful model training always depends on factors 

such as data quality, bias, and normalization. Xu et al., (2021) also suggest that these issues 

should be addressed for both linked and unconnected learning efforts through appropriate 

measures by careful study design, common protocols for data collection, structured 

reporting, and implementation of sophisticated methods for uncovering potential biases 

and stratification. 

Federated learning is more vulnerable to security threats due to advanced computer 

networks. Attacks against federated learning (FL) techniques have highlighted weaknesses 

in both robustness and privacy (Naseri et al., 2020). 

Another challenge is the return on investment (ROI) in both time and money. When 

it's unclear how long preparation, installation, training, and possibly workflow tuning will 

take, this naturally worries potential users (Beck, 2022). 

Federated Learning has the ability to connect any medical institution, hospital or 

isolated device to share their experiences with guaranteed confidentiality. Currently, 

however, the healthcare system is experiencing data clutter and efficiency problems. There 
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is no uniform data standard for the data collected, and the quality of data from multiple 

sources is uneven. The key to improving machine learning models is to ensure quality data 

with clean, accurate, and complete data if we are dealing with a federated learning scenario 

(Xu et al., 2020). 

Xu et al., (2020) list some directions or open questions that may be encountered 

when applying federated learning in healthcare, data quality, expertise integration, 

mechanisms incentive, custom, precision of the model. 

 

 

Assessing whether artificial intelligence should be used 

 
 

There are risks in overestimating what AI can achieve, unrealistic estimates of what 

can be achieved as AI evolves, and unproven products and services that remain untested 

rigorously tested for safety and effectiveness. This is partly due to the lingering appeal of 

“technological solutionism”, in which technologies such as AI are used as a “silver bullet” 

to break down deeper social barriers, structural, economic, and institutional. The allure of 

technology solutions and the promise of technology can lead to overemphasizing the 

benefits and ignoring the challenges and problems that new technologies such as AI can 

bring. This can lead to unbalanced health policies and poor investment by under-resourced 

countries, and pressure on PREs to reduce public spending on health. It can also divert 

attention and resources from proven but underfunded interventions that can reduce 

morbidity and mortality in LMICs. 
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First, the AI technology itself may not meet the standards of scientific validity and 

accuracy currently applied to medical technologies. For example, digital technologies 

developed in the early stages of the COVID-19 pandemic do not necessarily meet an 

objective standard of effectiveness to justify their use. AI technologies have been 

introduced as part of the pandemic response without sufficient evidence, such as 

randomized clinical trials or protective measures. Emergencies do not justify deploying 

unproven technologies; In fact, efforts to ensure that resources are allocated where they are 

most needed should increase the vigilance of businesses and governments (such as 

regulators and ministries of health) to ensure that the technology is accurate and effective. 

Second, the benefits of AI can be magnified when incorrect or overly optimistic 

assumptions are made about the infrastructure and institutional context in which the 

technologies will be used when needed. Intrinsic needs of technology use cannot be met. 

In some low-income countries, the financial resources and infrastructure for information 

and communication technology are inferior to that of HICs and the large investments 

required may discourage its use. The quality and availability of data may not be suitable 

for the use of AI, especially in LMICs. There is a risk that poor quality data will be collected 

for AI training, which could lead to false prediction patterns in the data rather than actual 

clinical outcomes. It is also possible that the lack of data as well as poor quality data distort 

the performance of the algorithm, resulting in incorrect performance or the AI technology 

being unavailable. In addition, significant investment may be required to make the 

heterogeneous datasets collected in PRITI usable. Collecting aggregate data in under- 

resourced settings is difficult and time-consuming and must consider the additional burden 
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on public health workers. There is no data on the most vulnerable or disadvantaged 

populations, including those lacking health services, or the data may be inaccurate. Data 

can also be difficult to collect because language barriers and mistrust can lead people to 

provide inaccurate or incomplete information. Often, unlinked data is collected, which can 

degrade the overall quality of the data set. Wider concerns about data collection and use, 

as well as biases in data, which will be discussed below. 

There may not be appropriate or enforceable regulations, stakeholder involvement 

or oversight, all of which are necessary to ensure that ethical and legal issues can be 

resolved. decide. establishment and human rights are not violated. For example, AI 

technologies may be introduced into countries that do not have up-to-date privacy and data 

protection laws (especially for health-related data) or without oversight by regulatory 

agencies. data protection agency to strictly protect the security and privacy of individuals 

and communities. In addition, LITI regulators may not have the capacity or expertise to 

evaluate AI technologies to ensure that system failures do not affect diagnosis, monitoring, 

and treatment. Third, there may be enough ethical concerns for a particular use case or AI 

technology, even if it provides accurate and useful information and insights, to preclude a 

particular use case. AI technology that can predict which individuals are more likely to 

develop type 2 diabetes or HIV infection can benefit individuals or communities at risk but 

can also lead to unnecessary stigma. against individuals or communities, whose choices 

and behavior are questionable or even criminalized for the over-medication of normally 

healthy individuals, creating unnecessary stress and anxiety, and leading to aggressive 

marketing by individuals by pharmaceutical companies and health services for other 
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profits. In addition, some AI technologies, if not carefully implemented, can exacerbate 

disparities in healthcare, including those related to ethnicity, socioeconomic status, or 

gender. 

Fourth, like all new medical technologies, even if AI technology does not come 

with ethical caveats, its benefits may not be justified by additional costs or expenses ( in 

addition to AI, information, and communication technology infrastructure) related to 

procurement, training and required technology investments. Robotic surgery may yield 

better results, but the opportunity cost associated with the investment must also be 

considered. Fifth, it may not be enough to determine whether AI technology is appropriate 

and appropriate for the context of LMICs, such as linguistic and canonical diversity within 

a country or across countries. For example, a lack of investment in translation could mean 

that some apps don't work well or are simply unusable by users. Such a lack of foresight 

leads to a larger problem, which is that many AI technologies are designed by and for high 

earners as well as individuals or companies that do not fully understand the specifics, body 

of technology, scores of the target population. 

However, unrealistic expectations about what AI can achieve can prevent its use 

unnecessarily. So, machines and algorithms (and the data used for algorithms) are said to 

be perfect in the public imagination, while humans can make mistakes. Healthcare 

professionals may overestimate their ability to perform their duties and overlook or 

underestimate the value of algorithmic decision-making tools, the challenges that can be 

managed, and evidence that benefits are measurable. Failure to use this technology can 

lead to preventable illness and death, making the failure to use a certain AI technology to 
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blame, especially if the standard of care has shifted to use it. For healthcare professionals 

to conduct such assessments, they require greater transparency about the performance and 

usefulness of AI technologies, as well as effective regulatory oversight. The regulator's role 

in ensuring rigorous testing, transparent reporting of results and monitoring performance. 

Even after the introduction of AI technology in the healthcare system, its impact must be 

continuously assessed when used in the real world, as well as the performance of the 

algorithm if it learns from the data different from its training data. Impact assessment can 

also guide decisions to use AI in the medical field before and after its introduction. An 

assessment of whether AI technology should be introduced in a low-income country, or a 

resource-poor environment may lead to a different conclusion than that in a high-income 

country. Risk-benefit calculations that do not favor the specific use of AI could be 

interpreted differently for a low-income country, such as a lack of sufficient medical staff 

to do the work. Certain tasks may forgo the use of more accurate diagnostics tools, so that 

individuals receive incorrect diagnoses and mistreatment. However, the use of AI in 

resource-constrained environments must be carefully scaled up to avoid situations where 

many people receive an accurate diagnosis of their health condition but do not have access 

to appropriate treatment. Healthcare professionals are tasked with providing treatment after 

testing and confirming the disease, and the relatively low cost of performing AI diagnostics 

must be accompanied by careful planning to ensure people are not left behind. Predictive 

tools to anticipate outbreaks will need to be complemented by robust monitoring systems 

and other effective measures. 
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Liability for use of artificial intelligence in clinical care 

 
 

Using AI to support or enhance clinical decision-making raises several questions. 

Are doctors liable if they follow an AI suggestion that leads to a medical error or if they 

ignore a suggestion that could avoid illness or death? The answers to these questions 

largely depend on other options, such as the types of behavior that are encouraged or 

discouraged by the legal system and the standard of care when the use of AI in clinical 

practice is concerned. Another option is whether liability rules should encourage clinicians 

to rely on AI to inform and confirm their clinical judgment, or to deviate from their own 

judgment if the calculation makes an unexpected conclusion. If liability rules penalize 

healthcare providers for relying on findings from AI technology that turn out to be 

inaccurate, they can only use the technology to identify take your own judgment. While 

this could protect them from liability, it would discourage the use of AI to its full potential, 

which is to enhance rather than just confirm human judgment. If physicians are not 

penalized for relying on AI technology, even if its recommendations go against their own 

clinical judgment, they may be encouraged to use these technologies more widely to 

improve their health. improve patient care or at least consider using them to challenge their 

own assumptions and conclusions. Whether or not a doctor uses AI also depends on the 

prevailing standard of care. If AI technologies are deemed to deviate from the standard of 

care or are not recognized as meeting the standard of care, physicians will not be 

encouraged to use them, as failure to meet the standard of care will result in disincentives 

and prohibits (but does not completely) medical errors. If the standard of care calls for the 
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use of AI technologies, then physicians will essentially be required to integrate their use 

into clinical practice. 

A separate but related issue is the responsibility of hospitals and healthcare systems 

to select a particular technology. Hospitals may be liable if they are not diligent in selecting 

technology or introducing, using, or maintaining it. In general, a hospital can be indirectly 

responsible for the errors of clinicians working in the hospital. Therefore, hospitals are 

encouraged to be both cautious in their choice of technology and to ensure that clinicians 

have clear instructions on how to use them to care for their patients and how to avoid the 

errors that lead to them. Liability for clinicians and hospitals. One possibility is to attribute 

the hospital's responsibility to a "sloppy certification". As a rule, hospitals are liable if they 

do not fully consider the credentials and work history of medical staff and physicians, they 

may have similar obligations when referring WHO. To do this, hospitals and healthcare 

systems need the information and tools to identify the right AI technologies for clinical 

use. Hospitals should also have a duty to restore control of a process or system that has 

been automated and is now presenting actual or potential risks that were previously 

unforeseeable. 

 

 

 

 
Challenges in commercialization of artificial intelligence for health care 

 

The practices of the biggest tech companies in the health AI space present a variety 

of ethical challenges, although some concerns apply equally to small and medium-sized 
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companies. The use of AI for health has been driven by businesses – from small startups 

to large tech companies – primarily through significant advocacy and investment. 

Supporters of the growing role for these companies expect them to be able to raise capital, 

in-house expertise, IT resources, and data to define and create new applications that support 

service providers. and health system. During the COVID-19 pandemic, many companies 

have sought to provide services and products to respond, many of which involve forms of 

public health surveillance. This raises a number of ethical and legal concerns, discussed 

throughout this document. A number of services are already widely used in the health 

sector for “logistics” and health system management functions. Some companies involved 

in technology development, such as the pharmaceutical and medical device industries, are 

integrating AI into their processes and products, and insurers are using AI to evaluate risk 

pricing or even automating insurance provision, which can present ethical issues. related 

decision making by algorithm. An important application of AI in healthcare is to aid in 

diagnosis, treatment, monitoring and adherence. Such applications can benefit healthcare 

systems; however, concerns have arisen in the past as more tech companies, especially 

larger ones, have moved into the healthcare sector. 

A common problem is the lack of transparency. While many companies know a lot 

about their users, their users, civil society, and regulators know very little about what the 

company does, including how they (and the government) operate, which has a significant 

impact on the public interest. 

Their activities remain partially concealed due to trade-secret agreements or a 

general lack of transparency practice obligations, including the role these companies play 
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in the healthcare and data is selected, data is collected, used to form and validate AI 

algorithms. Without transparency (and accountability), these companies have little 

incentive to act in ways that don't cross certain ethical boundaries or reveal deeper issues 

in technology, data or their model. Many companies prefer to keep their algorithmic models 

confidential and proprietary, as complete transparency can lead to criticism for both the 

technology and the company. 

The second major concern is the overall business model of the largest technology 

companies including the active collection and use of data to make their technology efficient 

and the use of redundant data surplus for commercial purposes. As a result, over the past 

decade, there have been several examples of big tech companies using large data sets of 

sensitive health information to develop AI technology for healthcare. While this health data 

may have been collected and used to develop useful health AI technologies, the data was 

not collected with the express consent of those providing the benefits of data to these 

companies may go beyond what is required to provide the product, and the companies may 

not offer the same benefits to the people who created the data in the first place. The 

collection of such sensitive health information may give rise to legal concerns. First, even 

if the data is anonymized by the company purchasing it, the company will be able to 

combine the data and anonymize relevant datasets from the amount of information it 

already has from other sources. Second, some big tech companies have been charged and 

even fined for data mishandling, and this concern could be heightened for companies that 

often collect sensitive health data. 
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Thirdly, as firms continue to accumulate large amounts of data, this can introduce 

anti-trust concerns (although it may not lead to regulatory enforcement), related to the 

growing market power of such companies, including barriers to smaller companies that 

may wish to enter an AI market. An additional concern is the growing power that some 

companies may exert over the development, deployment and use of AI for health (including 

drug development) and the extent to which corporations exert power and influence over 

individuals and governments and over both AI technology and the health-care market. 

Data, computing power, human resources and technology can be concentrated within a few 

companies, and technology can be owned either legally (IP protection) or because the size 

of a company`s platform results in a monopoly. Monopoly power can concentrate decision- 

making in the hands of a few individuals and companies, which can act as gatekeepers of 

certain products and services and reduce competition, which could eventually translate into 

higher prices for goods and services, less consumer protection or less innovation. While 

the growing role of large companies in the USA, such as Google, Facebook and Amazon, 

in the development and provision of AI for health care has been under scrutiny, large 

technology companies in China and other Asian countries are playing a similar role in 

health through such services and technologies. These include Ping An, Tencent, Baidu and 

Alibaba, both of which are building their own technology platforms and collaborating with 

user platforms like WeChat to reach millions of people in China. For example, Tencent is 

investing in at least three key areas of healthcare: AI-based technology to support diagnosis 

and treatment, "smart hospitals" to provide online service networks, and online services. 

connection. data through a smart health card (primarily raising privacy and data usage 



75  

 

concerns) and a "vehicle" for providing health information to users online. Alibaba is 

working with hospitals to forecast patient needs to allocate medical staff and develop AI- 

powered radiology diagnostic tools. 

The market power and control of such large corporations may be part of the "first- 

mover" advantage that some large corporations can enjoy through their access to AI for 

health. Even if the data used by a firm (for example, data from a public health system) 

could be used by others, other firms might be discouraged or unable to replicate use of such 

data for a similar purpose, especially if another company has already done so. 

Such power also means that the rules set by certain companies can force even the 

largest and wealthiest governments to change course. For example, during the COVID-19 

pandemic, Google and Apple introduced a technical standard for where and how data 

should be stored in proximity-tracking applications that differed from the approach 

preferred by the governments of several HIC, which resulted in at least one government 

changing the technical design of its proximity-tracking application to comply with the 

technical standards of these two companies. 

Although the approach of these companies may have been consistent with privacy 

considerations, the wider concern is that these firms, by controlling the infrastructure with 

which such applications operate, can force governments to adopt a technical standard that 

is inconsistent with its own public policy and public health objectives. When most data, 

health analytics and algorithms are managed by large technology companies, it will be 

increasingly likely that those companies will govern decisions that should be taken by 
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individuals, societies and governments, because of their control and power over the 

resources and information that underpins the digital economy. 

This imbalance of power also affects those who should be treated fairly by their 

government or at least, if treated unfairly, their government could be held accountable for 

the injustice. Equality. Without a strong government role, corporations can ignore the needs 

of people, especially those on the margins of society and the global economy. Close 

government oversight and good governance are essential in this area. Monitoring 

mechanisms can be built. If these partnerships are not carefully designed, they may lead to 

misuse of resources (usually patient data) or conflicts of interest in decision-making in 

these partnerships, or may prevent or limit the use of the regulation to protect the public 

interest if necessary. 

The Data Protection Act is a “rights-based approach” that provides standards for 

regulating data processing that both protect the rights of individuals and establish 

obligations for controllers and processors. Data protection law also increasingly recognizes 

that individuals have the right not to follow decisions guided only by automated processes. 

More than 100 countries have passed data protection laws. A well-known part of data 

protection law is the General Data Protection Regulation (GDPR) of the European Union 

(EU); In the United States, the Health Insurance Portability and Accountability Act, 

enacted in 1996, applies to the confidentiality and security of health data. 

Regulations on AI technologies are likely to be developed and implemented by 

health regulators tasked with ensuring the safety, effectiveness, and rational use of 

technologies for the development of healthcare. strong. and therapy. A group of WHO 
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experts is preparing to review AI regulation for the discussed health areas that stakeholders, 

including developers and regulators, should take into account when reviewing public 

companies. New technology in healthcare. These include documentation and transparency, 

risk management and lifecycle approaches, data quality, clinical analysis and validation, 

engagement and collaboration, as well as privacy and data protection. Many regulators are 

preparing considerations and frameworks for the use of AI and these need to be reviewed, 

possibly with the relevant regulator. Governance of AI through legal frameworks and 

ethical principles needs to be taken into account. 

 

 

Governance and oversight of large technology companies 

 
 

Large tech companies, especially those from China and the United States, should 

play a central role in the development and implementation of medical AI, through 

partnerships, in-house AI development. or acquire other businesses. The role and 

involvement of these companies raise additional considerations for private sector 

oversight. Large technology companies, few, hold significant power in the field of AI 

through human, economic and technical resources, accumulated data about their products 

and services, values. The main influence they can exert through their relationships and 

partnerships with governments and organizations, employees, and the ability to use their 

platform to recommend products and services to many users who regularly connect to their 

platform. Over time, big tech companies can develop even more diverse products and 

services. Google is developing a range of diagnostic apps whose safety and effectiveness 
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are still under scrutiny, and its parent company, Alphabet, has launched a new health 

insurance service that will partner with Swisse. 

Companies may also introduce products and services that can compete with, 

replace, or introduce a function or process normally operated by the government. Tencent 

introduced an app that uses information voluntarily provided by individuals to determine 

the type of healthcare provider a patient should see, in part to address the reality in China 

where the patient is ill. Individuals use their research or intuition to seek medical advice 

from experts in fields unrelated to them. The growth of telemedicine provides platforms 

through which companies can bring patients to their platforms and they recruit doctors to 

provide telemedicine on the platform. this platform. For example, Tencent WeDoctor, in 

partnership with the government, has registered at least 240,000 providers on its platform, 

2,700 hospitals and 15,000 pharmacies. At least 27 million monthly users access the 

"healthcare collaboration platform" for remote or AI-guided consultations. The user is then 

matched with the appropriate healthcare system specialist. This may mean that in the long 

run, governments may not so much regulate the companies that provide these services but 

depend on them to fill gaps and manage parts of the system. system. health care. 

Technology companies can provide the necessary infrastructure to operate health services, 

which also creates government reliance on the services and companies' capabilities, rather 

than regulating the industry to satisfy the needs of government and the public. As noted 

above, tech companies have started publishing tutorials on how to use AI; however, they 

are sometimes seen as "ethical cleansing", which can create a lack of accountability 

(retrospective responsibility for harm), not involving the public in the development 
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process. their development and may be administered in a manner that is not transparent to 

the public or government, without public participation or by an independent body 

responsible for monitoring compliance with the principles. 

 

 

2.6 Consumer Perception 

 

Various models have been developed to explain the user adoption of new 

technology and these models introduce factors that can affect user acceptance (Taherdoost, 

2018). Technology Adoption Model (TAM) introduced by Davis (1989) explains the 

adoption and usage of technology by individuals in an organization. Kim et al. (2007) 

argued that TAM is limited, however, in explaining the adoption of new ITs or behaviors, 

such as mobile commerce. The model suggests that several factors influence their decision 

about how and when they will use it, notably perceived usefulness, and ease-of-use. User’s 

attitude influences the behavioral intention in adoption of new technology. While external 

variables can influence the user’s attitude, however the perception may depend on age and 

gender. 

The Value-based Adoption Model (VAM) is more suitable for explaining the dual 

role of technology users and service consumers (Taherdoost, 2018). The value-based 

Adoption Model (VAM) based on the mental accounting theory thoroughly explains the 

costs and benefits associated with choices made by users. A comparative study also 

supports the theory that the value-based adoption model could best explain the consumer 
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acceptance of AI-based services compared to other widely used technology acceptance 

theory (Sohn et al., 2020). 

Safi, Thiessen and Schmailzl (2018) conducted study to determine and evaluate the 

factors that influence acceptance and resistance to achieve a successful implementation of 

new technologies. confirmed that adoption of new technologies in health care depended on 

individual opinions of the factors relating to them. The acceptance of digital solutions and 

innovative medical technology by patients and professionals relies on understanding their 

anxieties and feelings of insecurity. 

The acceptance of use of AI-based tools in healthcare services is challenging as 

consumers express fundamental concerns about the technology (Turja et al., 2020). 

Generally, the perceptions of radiologists have not been considered and details of datasets 

used for training and implementation approaches for adoption of machine learning tools 

have not been reported (Masud et al., 2019). A study reports that, in general, there is a lack 

of trust in the features of AI systems (Sun and Medaglia, 2019). For instance, individuals 

may not trust AI ‘s performance and diagnostic ability for treatment purposes. indicated 

that the consumer’s perception of trustworthiness is affected by the level of autonomy of 

AI systems. 

Understanding the barriers and customer perception in adoption of these services 

are critical to invest in R&D and strategize sustainable business models (Esmaeilzadeh, 

2020). 

In study conducted by Esmaeilzadeh, (2020) on use of AI-based tools for 

healthcare purposes, the results indicate that individuals’ positive perceptions toward AI- 
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based devices can lead to a higher intention to use AI. This study focused on general AI- 

based tools and did not distinguish traditional and federated learning-based tools. 

As general conclusion, further studies are essential to examine the acceptance of 

consumers using federated machine learning approach in AI based tools in radiology 

medical imaging. Federated learning promises to bring trust since it addresses the privacy 

concerns and build robust generalizable algorithm with multisite collaborations. The 

significance of understanding the influence of federated learning approach towards user 

adoption intent of AI-based tools is critical for AI developers and vendors to invest and 

build sustainable business models. 

 

 

2.7 Summary of Literature Review 

 
 

AI algorithms are likely to suffer from a range of shortcomings, including inability 

to apply outside the field of training, bias, and fragility (which tends to be easily fooled). 

Important factors to consider include changing the data set, randomly adjusting for 

confounding factors instead of the actual signal, the propagation of unintended biases in 

clinical practice, and the provision of algorithms. interpretability, develop reliable 

measures of model reliability, and challenge generalization to different populations. 

Particularly important for the EHR algorithm, it is easy to overlook the fact that all 

inputs are generated in non-permanent environments with variable patient numbers, where 

clinical and operational behavior changes over time. The introduction of a new prediction 

algorithm can lead to changes in practice, resulting in a new distribution compared to the 
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distribution used to train the algorithm. Therefore, methods of identifying deviations and 

updating models to cope with the reduced performance are essential. Mitigation measures 

to manage this effect include careful quantification of performance over time to proactively 

identify problems, in addition to the need for periodic retraining. Data-driven testing 

procedures have been proposed to recommend the most appropriate update method, from 

simple recalibration to full model retraining, to maintain performance over time (Kelly et 

al. associates, 2019). 

Machine learning algorithms will use all available signals to achieve the best 

possible performance in the data set being used. This may include exploiting unknown 

confounding factors that may be unreliable, weakening the algorithm's ability to generalize 

to new data sets. For example, in a classic example, the machine learning model did not 

learn the intrinsic difference between dogs and wolves, but instead learned that wolves are 

often depicted standing in the snow, while dogs are often depicted as standing in the snow. 

Similar concerns exist in the medical field. In one study, an algorithm was more 

likely to classify a skin lesion as malignant if the image contained a ruler, because the 

presence of a ruler correlated with an increased likelihood of a cancerous lesion. The 

presence of surgical marks on the skin has also been shown to falsely increase the 

melanoma probability of the deep learning model and, consequently, the false-positive rate. 

In another study, hip fracture detection was supported by confounding factors, including 

CT scan pattern and scans marked as 'urgent'. Another algorithm for detecting pneumonia 

on chest x-rays can accurately identify hospital equipment and services, learning the link 

between portable X-ray machines and pneumonia. Ongoing work is needed to understand 
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the specific features learned by neural networks and will be essential for generalization in 

many healthcare settings. 

Most AI systems lack reliable generalization, let alone clinical applicability, to most 

types of medical data. A fragile model can have blind spots that can make particularly bad 

decisions. Generalization can be difficult due to technical differences between sites 

(including differences in equipment, coding definitions, EHR systems, laboratories, and 

testing equipment) as well as differences in clinical practice and local management. 

The problem of generalizability is closely related to the problem of discriminatory 

tendencies. Machine learning's blind spots may reflect societal biases at worst, with the 

risk of unintended errors or unknown accuracy in small groups and concerns about the 

potential for accuracy. ability to amplify biases present in historical data. Studies show that 

in some current contexts, the weaknesses of AI systems disproportionately affect groups 

that are already disadvantaged by factors such as race, gender, and socioeconomic 

background. 

Inequity in the algorithm can be distilled into three components, namely 

 

(1) model bias (i.e., models chosen to best represent the majority and not necessarily 

groups). underrepresented), 

(2) model variance (due to incomplete minority data) and 

 

(3) outcome noise (the effect of a set of unobserved variables potentially interacting 

 

with the model's predictions, which can be avoided by defining subpopulations to measure 

additional variables) 
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The researchers ensured that the steps were taken correctly to quantify accuracy. 

bias before deploying the models. Algorithms should be designed with the global 

community in mind and clinical validation should be performed using a cross-section of 

the intended implementation team. Careful analysis of performance by subgroups of the 

population should be conducted, including age, ethnicity, sex, socioeconomic class, and 

location. Analysis to understand the impact of a new algorithm is especially important, i.e., 

if the disease spectrum detected by the AI system differs from current clinical practice, the 

pros and cons of the development must be assessed of that algorithm have this different 

spectrum of diseases. In mammography, it is possible to detect less severe ductal carcinoma 

in situ, potentially leading to increased treatment with little outcome benefit. Potential 

pilots in health systems should be undertaken to understand product features and identify 

potential pitfalls during actual implementation. 

Algorithms have been shown to be sensitive to the risk of adversary attack. 

Although somewhat theoretical at this point, an adversarial attack describes an alternative 

efficiency model that is susceptible to manipulation by inputs explicitly designed to fool 

them. For example, in one study, an image of a benign mole was misdiagnosed as a 

malignant mole by adding conflicting noise or even just rotation. 

A fundamental element for the safe and efficient implementation of AI algorithms 

is the development of the necessary regulatory frameworks. This poses a particular 

challenge given the current pace of innovation, the significant risks involved, and the 

potentially flexible nature of machine learning models. Proactive regulation will bring 

confidence to clinicians and health systems. Recent guidance from the US Food and Drug 
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Administration has begun to develop a state-of-the-art regulatory framework to ensure safe 

and effective artificial intelligence devices can work for patients data is not available for 

machine learning. Data is often stored in countless medical imaging systems, pathology 

systems, EHRs, electronic prescribing tools, and insurance databases, which are difficult 

to piece together. Through unified data formats, such as Rapid Healthcare Interoperability. 

It is also important to consider the regulatory impact of innovations and upgrades 

that AI product vendors are likely to develop over the life of the product. Some AI systems 

will be designed to improve over time, challenging traditional evaluation processes. As AI 

learning is continuous, periodic system-wide updates after a full assessment of clinical 

significance are better than continuous updates that can lead to bias. Developing continuous 

performance monitoring guidelines for continuously calibrating models using human 

feedback will help identify performance deviations over time. 

Even with a highly efficient algorithm that overcomes all the above challenges, the 

human barriers to adoption are substantial. To ensure that this technology is accessible and 

beneficial to patients, it is important to focus on clinical applicability and patient outcomes, 

methods of algorithmic interpretation, and improvements and better understand human- 

computer interaction. 

Several studies (Turja et al., 2020; Masud et al., 2019; (Sun and Medaglia, 2019) 

identified that users of traditional machine learning in medical imaging express concerns 

like mistrust, bias, generalizability, explainability and conformance with data privacy 

regulations resulting in very slow adoption rate. There is fundamental concern expressed 
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by healthcare professionals with trustworthiness and robustness of traditional machine 

learning algorithms (Kaissis et al., 2020). 

The experimental studies (Stripelis et al., 2021); (Yang et al., 2021); Linardos et 

al. (2021) (Sarma et al., 2021)Dayan et al., 2021; (Sheller et al., 2020)) conducted in 

various modalities of radiology medical imaging have positive results showing federated 

learning performs better than traditional machine learning and theoretically improve the 

robustness of algorithm while preserving the patient data. The analysis of the literature 

provides sufficient evidence that federated learning offers easy scalability, flexible training 

scheduling, and large training datasets through multi-site collaborations, fulfilling the 

essential conditions to the successful deployment of an AI solution. Federated learning 

approach is expected to reduce the bias, allows generalizability and explainability due to 

distributed data and increase the performance of the algorithm. 

Federated learning (FL) is a learning model that seeks to address data governance 

and privacy by training algorithms collaboratively without exchanging data. Originally 

developed for various fields, such as mobile and peripheral use cases, it has recently gained 

popularity for healthcare applications. FL allows information to be obtained in a 

collaborative way, for example in the form of a consensus model, without moving patient 

data outside the firewalls of the organizations in which they reside. Instead, the ML process 

takes place locally at each participating organization, and only model features (e.g., 

parameters, gradients) are transferred as shown in Figure 6. Recent research has shown that 

FL-trained models can achieve comparable performance levels to centralized host-trained 

models, datasets and outperform models that view only separate data from a single 
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organization. While federated learning has some advantages, significant challenges such 

as security issues, regulatory compliance, model performance monitoring, etc. must be 

solved before federated learning can optimally generate acceptable AI models (Xu et al., 

2021 and Rieke et al., 2020). In my opinion, some other technical challenges would be 

maintainability of distributed models, internet connectivity, possible bias in received 

response, infrastructure, and algorithm optimization. 

The successful implementation of FL could therefore have significant potential to 

enable large-scale precision medicine, leading to unbiased decision-making models that 

optimally reflect an individual's physiology and susceptible to rare diseases. However, FL 

still requires rigorous technical review to ensure that the algorithm runs optimally without 

compromising patient safety or privacy. However, it has the potential to overcome the 

limitations of methods that require a single centralized data set (Rieke et al., 2020). The 

FL's promise is simple: address privacy and data governance challenges by enabling ML 

from non-localized data. In the FL environment, each data controller not only establishes 

their own governance processes and associated privacy policies, but also controls access to 

data and potentially data revocation. This includes both the training and validation phase. 

In this way, FL can create new opportunities, such as by enabling large-scale institutional 

validation or enabling new research in rare diseases, where incident rates are low and data 

sets are low. data of each organization is too small. Migrating from model to data rather 

than the other way around has another big advantage: large, archival medical data doesn't 

need to be copied from local institutions into a centralized group and copied to new data 

by each user using this data for the local model. Once the model is delivered to local 
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organizations, it can scale naturally with a potentially growing global dataset without 

disproportionately increasing data storage requirements. 

Health data is very sensitive and should be protected appropriately, following 

appropriate security procedures. Therefore, some of the key considerations are the trade- 

offs, strategies, and residual risks of the regarding FL's potential for privacy protection. 

It is important to note that FL does not address all potential privacy issues, and like 

ML algorithms in general, there will always be some risk. Privacy protection techniques 

for FL provide levels of protection that exceed the ML models currently on the market. 

However, there are performance trade-offs, and these techniques can affect, for example, 

the accuracy of the final model. In addition, future ancillary techniques and/or data may be 

used to compromise a model previously considered low risk (Rieke et al., 2020). 

In addition to the available literature, based on my verification of the US FDA 

official published database on the website fda.gov (Artificial Intelligence and Machine 

Learning (AI/ML) -Medical Devices Economic Support, 2021), no federated learning- 

based algorithms have been cleared. 

In my opinion, it is safe to assume that no federated learning-based algorithms are 

currently in use at any institution in their clinical workflow. 

Federated Machine Learning allows us to overcome the obstacles encountered by 

traditional machine learning models such as: 

• Traditional machine learning occurs by moving all data sources to a centralized server to 

training and model building, but this may violate the rules of military organizations, 

especially when a third party is used to create, train and maintain the model. 
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• To train the model, a third party must prepare, clean, and restructure the data to be suitable 

for model training, however, this may violate the confidentiality of the data as the data data 

is processed to create the model. 

• Traditional machine learning models also take a long time to build models with acceptable 

accuracy, leading to lag for organizations, especially startups. 

• Traditional machine learning also requires a large amount of historical data to exist 

to train the model to provide acceptable accuracy 

• A secure distributed machine learning method is needed to train the data data 

 

customers on their servers without a data security breach, saving compute power and fixing 

cold start, allowing customers to get immediate results (Abdul Salam, Taha & Ramadan, 

2021). 

Federated learning has the potential to solve these problems, as it allows dirty data 

servers to locally train their models and share their model gradients without violating 

privacy. of the patient. Thus, successful implementation of FL could have significant 

potential for large-scale precision drug activation, leading to unbiased decision-making 

models that optimally reflect an individual's physiology and sensitive to rare diseases while 

respecting governance and security issues. However, FL still requires rigorous technical 

review to ensure that the algorithm runs optimally without compromising patient safety or 

privacy. However, it has the potential to overcome the limitations of methods that require 

a single centralized data set. experimental studies performed only show the performance 

of linked learning models and currently, according to my literature search, no survey 
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studies have been performed to understand the reliability and how strongly the user 

perceives affects the user's intention to accept. 

The AI online marketplace provides a platform for buying and selling AI models 

between AI developers and customers (Kumar et al., 2020). The use of federated learning 

for machine learning to protect privacy among market players will be key to changing the 

business model in the AI market. 

To assess the business value of investing in and implementing federated machine 

learning algorithms, it lacks the consideration of user-perceived reliability and robustness 

in federated machine learning, and Their intentions for user acceptance are based on my 

review of the material and opinions. In addition, given the novelty of federated learning in 

AI in medical imaging, it is, in my opinion, important to understand customer perceptions 

of the robustness and reliability of these association learning algorithms. FL includes a 

paradigm shift from centralized data lakes and it is important to understand its impact on 

various stakeholders in the FL ecosystem. 

FL's promise is simple: address privacy and data governance challenges by 

enabling ML from non-localized data. In the FL environment, each data controller not only 

establishes their own governance processes and associated privacy policies, but also 

controls access to data and can revoke it. there. This includes both the training and 

validation phase. In this way, FL can create new opportunities, such as by enabling large- 

scale institutional validation or enabling new research in rare diseases, where incident rates 

are low and data sets are low. data of each organization is too small. Migrating from model 

to data rather than the other way around has another big advantage: large, archival medical 
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data doesn't need to be copied from local institutions into a centralized group and copied 

to new data by each user using this data for the local model. train. Once the model is 

delivered to local organizations, it can scale naturally with a potentially growing global 

data set without disproportionately increasing data storage requirements (Rieke et al., 

2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III: 

METHODOLOGY 

 

 
3.1 Overview of the Research Problem 

 
 

This research project will evaluate the impact assessment of federated learning 

setting on user’s perception of trust and robustness and likelihood of user adoption intent 

of AI-based tools in radiology medical imaging and test hypothesis whether user perception 

of trustworthiness and robustness of a machine learning algorithm in medical imaging has 

positive co-relation with federated machine learning approach. The outcome  of this 
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hypothesis testing could validate the theoretical understanding and brings value proposition 

in research and development in federated learning algorithms which is critical for Vendors 

and conceptualize the future business models of AI marketplace. 

Similar research was conducted by McNair (2021), on Influencer marketing by 

conducting a quantitative study that researches the impact of two influencer attributes, 

trust, and content quality analyzing the co-relation with travel intentions of a follower. Due 

to the similarity of the research question, the methodology and data analysis procedures 

has been adapted. 

 

 

 

 

 

 
3.2 Operationalization of Theoretical Constructs 

 
Based on the hypothesis, there are three theoretical constructs - Perceived 

Trustworthiness, Perceived Robustness, and Intention to use AI-based tools using federated 

learning approach was described. Each of the measurement constructs was divided into 5 

items. Perceived Trustworthiness as PT1, PT2, PT3, PT4 and PT5. Perceived Robustness 

as PR1, PR2, PR3, PR4 and PR5 and Intention to use AI-based tools using federated 

learning approach as INT1, INT2, INT3, INT4 and INT5. The measurement constructs for 

“Intention to use AI-based tools using federated learning approach” was directly adopted 

from survey study (Esmaeilzadeh, 2020). 

 

Construct Item Wording 
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Perceived 

 

Trustworthiness 

PT1 It can preserve privacy 

PT2 It can produce Results that are Unbiased 

 
PT3 It can produce Explainable machine learning models 

 
PT4 It can adapt to specific needs and stakeholder requirements 

 
PT5 It inspires trust in machine learning models/ AI-based tools in 

 

radiology 

Perceived 

Robustness 

PR1 It can produce Accurate results 

PR2 The algorithm performance is better over traditional machine 

learning 

 PR3 It produces results that are Generalizable for the intended 

population 

 PR4 Algorithm will always stay most updated 

 
PR5 It is reliable over traditional machine learning models 

Intention to use 

AI-based tools 

using federated 

learning 

approach 

INT1 I agree to use AI-based tools for clinical purposes 

INT2 Using AI-based tools for healthcare purposes is something I 

 

would consider 

INT3 I would like to use AI-based devices to manage my healthcare 

INT4 In the future, I am willing to use AI-based services for 

 

diagnostics and treatments 

 
INT5 I am very likely to use recommendations provided by AI-based 

 

tools for care planning 

 

 

Table 1 Measurement Constructs (Esmaeilzadeh, 2020) 
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3.3 Research Design 

 

The study analyzes the correlation between a participant’s perception of federated 

learning’s trustworthiness and robustness over traditional machine learning approach and 

ascertains whether this impacts the participant’s adoption intentions of AI-based tools in 

radiology medical imaging. Understanding these two aspects of the federated learning and 

user adoption relationship will allow businesses to invest in R&D and product development 

using federated learning approach for their projects and allow developers to facilitate the 

growth of suitable attributes for marketing success. 

The quantitative study uses perceived trustworthiness and robustness as the two 

independent variables and user adoption intent of AI-based tool as the dependent variable. 

To collect the data, online survey was planned as data collection instrument. 

 

The online survey consists of research questionnaire on Likert scale. The main survey link 

was created and then shared with the participants. After the data collection via the survey, 

IBM SPSS statistical software was used for analysis. 

To analyze the Likert scale data, parametric tests (Pearson's correlation and linear 

regression) was used to accept or reject the hypotheses. A multiple linear regression 

analysis can be conducted since there are two independent variables (trustworthiness of 

federated learning and robustness of federated learning) and one dependent variable (user 

adoption intent). 

 

 

3.4 Expert Review of Survey Questionnaire 
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The review of survey questionnaire by experts was considered necessary because 

it may help to improve the quality and efficiency of the study. The review survey 

questionnaire was conducted by personally selected PhD holders (2) and subsection of the 

population (4 consumers). The potential limitation was the personal selection, but the 

author selected few people who can invest their time and provide quality feedback, giving 

the survey the best chance of providing significant insights. 

For review, the Survey questionnaire was shared with participants. Based on the 

verbal feedback, definitions of terms were included for better clarity and additional 

question to distinguish the participant as users in radiology and non-radiology. This was 

considered since study cohort may contain both users in radiology and non-radiology. One 

of the reviewers suggested to assess the participant knowledge in Federated Learning on 

Likert scale instead of nominal “Yes/ No”. Instead of changing the original question to 

likert scale, an additional question was included to first understand whether the participant 

is aware of Federated learning using nominal “Yes/ No” and in case answer is “Yes”, then 

participants were asked to self-assess their level of knowledge on the 5-point scale, with 1 

being “Very low” and 5 being “Very high”. In addition to feedback on questionnaire, it 

was also suggested to conduct a sub-group of analysis of association of type of users with 

their perception of adoption intent as it can provide valuable information from business 

standpoint. 

 

 
3.5 Population and Sample 
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The study population consists of community formed by enthusiasts of AI in 

healthcare Whatsapp messenger group. There were 250 members in the group consisting 

of Radiologists, Clinician, Academicians, Developers, Manufacturers, Enthusiasts etc. It 

was a convenience sample. Therefore, sample size of 250 was considered for this survey. 

Evans and Mathur (2018) found that response rate for most email surveys was closer to 

11%. An expected response rate of around 15% was targeted. So, the expected response 

was considered as 40. 

3.6 Participant Selection 

 
Participants will be users (both prospective and existing) of AI-based tools in 

healthcare focusing on radiology. In general radiologists, Clinicians, Developers, Vendors, 

Technical Experts, Academicians and AI in Healthcare enthusiasts from Medical Imaging 

communities can be considered as study cohort. 

 

 
3.7 Instrumentation 

 
Online survey was chosen as data collection instrument. Online surveys are useful 

in conducting the research. It is found convenient way for questionnaire preparation, data 

collection, storing of data, visualization of data and for collaboration of work. Online 

surveys can be conducted at low cost, provide real-time access from multiple devices and 

in a short period of time. Some of the challenges related to online surveys were sampling, 

response rate, non-respondent characteristics, limited sampling and respondent 

availability, maintenance of confidentiality (Howard, 2019). 
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Online survey research is used more frequently and better accepted by researchers. 

Online surveys have become a preferred method for many researchers due to the rise of 

access to broadband internet, mobile phones, and social networks over the last 15 years. 

An online survey was used, since this is widely seen as the best way to survey a global 

population in a cost-effective way and most preferred by researchers in recent decade 

(Evans and Mathur, 2018). 

 

 

3.8 Data Collection Procedures 

 
 

To collect the data, online survey was used as data collection instrument. 

 

After receiving the approval of Research proposal including survey questionnaire by the 

Internal Review Board at SSBM, the survey link was sent to the participants. 

To collect the data for this study, an online survey will be created through Google 

Forms© and sent to participants. Google Forms© maintains security, privacy and 

regulatory compliance as stated on the website (Google, 2019). 

Participants were given 3 weeks to answer the survey questions before the survey 

was closed. A follow-up reminder will be sent out 2 days before due date. The follow-up 

reminders are proven to increase the survey response rate (Evans and Mathur, 2018). 

An online survey using Google Forms© was designed by formulating 12 questions. 

The link to the survey was distributed among radiologists, Clinicians and AI enthusiasts. 

The survey remained open for 3 weeks between 26 January and 22 February 2022 

(Malwade, 2022). 
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3.9 Data Analysis 

 
 

After the data collection via the survey, responses were stored in a spreadsheet 

(Google Forms©) that was later transformed into Microsoft Excel(.xlsx). IBM SPSS 

statistical software (Version 28) was used for analysis. To analyze the Likert scale data, 

parametric tests (Pearson's correlation and linear regression) was used to accept or reject 

the hypotheses. Sullivan and Artino (2013) stated that parametric tests are sufficiently 

robust to yield largely unbiased answers that are acceptably close to the truth when 

analyzing Likert scale responses. 

For the analysis, Pearson's correlation will be used to test hypotheses 1 and 2. The 

correlation studied both trustworthiness and user adoption intent for hypothesis 1 and 

robustness and user adoption intent for hypothesis 2. Pearson's correlation was selected for 

this analysis because it analyzed two continuous variables and measured the strength of the 

association. 

A multiple linear regression analysis was conducted since there are two 

independent variables (trustworthiness of federated learning and robustness of federated 

learning) and one dependent variable (user adoption intent). Since there are two 

independent variables (trustworthiness and robustness) and one dependent variable (user 

adoption intent), a multiple linear regression analysis was conducted. Hyman and Sierra 

(2016) states that multiple linear regression should be used when "identifying marketing 

strategies that influence purchases by a target customer." In this study, the "marketing 
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strategies" are developing trustworthy and robust AI-based tools, and the "purchase" is user 

adoption intent. This test was used to answer hypothesis 3. 

All inferential statistical research used 95% confidence interval. As a result, 

statistical significance was established at a level of 5% (= 0.05). Prior to doing the 

regression analysis, descriptive data for the various variables was provided, including 

mean, median, standard deviation, and kurtosis. These demonstrate the normality or 

distribution of the variables. 

After that, a correlation analysis for the data was constructed and shown. The first 

stage in regression analysis was to establish correlation between the independent and 

dependent variables; only then can the precise influence of the independent factors on the 

dependent variables be determined. Additionally, the correlation matrix will demonstrate 

the link between the dependent variables. Correlation between independent variables 

increases the probability of multicollinearity, which may affect regression results. 

According to Andersson et al. (2014), regression analysis may reveal just 

relationships between variables, not the underlying causal mechanism. Nonetheless, 

regression is an effective technique for predicting and estimate in the future. All variables 

were quantified using descriptive analysis, correlation and regression analysis were used 

to evaluate quantitative data, whereas content analysis was used to evaluate qualitative 

data. 

After that, a correlation analysis for the data was constructed and shown. The first 

stage in regression analysis was to establish correlation between the independent and 

dependent variables; only then can the precise influence of the independent factors on the 
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dependent variables be determined. Additionally, the correlation matrix will demonstrate 

the link between the dependent variables. Correlation between independent variables 

increases the probability of multicollinearity, which may affect regression results. 

A multiple linear regression analysis was conducted since there are two 

independent variables (trustworthiness of federated learning and robustness of federated 

learning) and one dependent variable (user adoption intent). Since there are two 

independent variables (trustworthiness and robustness) and one dependent variable (user 

adoption intent), a multiple linear regression analysis was conducted. Hyman and Sierra 

(2016) states that multiple linear regression should be used when "identifying marketing 

strategies that influence purchases by a target customer." In this study, the "marketing 

strategies" are developing trustworthy and robust AI-based tools, and the "purchase" is user 

adoption intent. This test was used to answer hypothesis 3. 

 

 

3.10 Research Design Limitations 

 

For this study, the sample consisted of community formed by enthusiasts of AI in 

healthcare Whatsapp messenger group. The community included Radiologists, clinician, 

Academicians, developers, manufacturers, enthusiasts etc. It was a convenience sample, 

having excluded a large population that lacked the opportunity to participate. According to 

participant exclusion criteria, participants are included if they are consumers, developers, 

AI enthusiasts etc. and these inclusions do not consider age, sex, socioeconomic status, or 

race. The primary disqualifying exclusion is that if a user did not read or skipped the Survey 
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link or missed responses they were not considered for the study. This can impact the 

replication of this study since no one except the author has access to this particular sample, 

and future studies would be unable to test the same population. 

The Likert scale does not allow the population to input their own answers and may 

be seen as “too closed”. This survey method could reduce the probability of participants 

completing the survey, especially if they had something they wanted to convey that was 

not covered by the available answers. 

A quantitative study with a correlation-based analysis was chosen. There are 

inherent limitations with correlation studies, since a positive or negative correlation does 

not mean that the variables have a direct cause-and-effect relationship. The positive or 

negative correlation simply means that there is an association present when studying the 

two variables together. 

The survey also deals with the idea of perception, since it asks participants to judge 

federated learning capabilities on deep topics such as trustworthiness and robustness. One 

participant's perception is potentially different from another's, but that does not mean that 

the federated learning approach is trustworthy, just that the individual perceives them as 

trustworthy. 

The survey (Appendix 1) was used to capture the data for the study. The tool had 

multiple sections and the scale for each section will have 5-point Likert scale. Another 

potential limitation for the survey could be that it dealt with “perceived trustworthiness” 

and “perceived robustness,” since it was simply asking participants how they perceived 

these attributes in the federated learning approach. The research question was based on 
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how the respondents perceived the federated learning’s trustworthiness and robustness. 

This perception is not necessarily an accurate analysis of what something like “high 

robustness” means in the academic sense, but simply what it is perceived as by the 

respondent. 

 

 

3.11 Conclusion 

 

The study analyzes the correlation between a participant’s perception of federated 

learning’s trustworthiness and robustness over traditional machine learning approach and 

ascertains whether this impacts the participant’s adoption intentions of AI-based tools in 

radiology medical imaging. 

The quantitative study uses perceived trustworthiness and robustness as the two 

independent variables and user adoption intent of AI-based tool as the dependent variable. 

A Pearson correlation was calculated on each independent variable versus the dependent 

variable and a linear regression to test the correlation between both independent variables 

and the dependent variable. 

The review of survey questionnaire by experts was considered necessary because 

it may help to improve the quality and efficiency of the study. 

The survey questionnaire was prepared, and measurement contstucts were 

prepared. Few were adopted from research study (Esmaeilzadeh, 2020). The questionnaire 

was prepared using Likert scale to evaluate the user perception trustworthiness, robustness, 

and user adoption intent. The questionnaire was designed to collect respondents’ attributes 
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like experience, roles, knowledge of federated learning and whether they are already a 

customer of AI-based tools or intent/participating in research. These details could provide 

key insights into current trends in use of AI-based tools and established co-relations with 

adoption intent. 

Few of limitations of this study design were choice of samples, use of Likert scale 

which was considered as closed. 
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CHAPTER IV: 

RESULTS 

 

4.1 Introduction 

 
 

This chapter summarizes the findings of research. To begin, it gives information on 

the sample size, response rate, dependability, and validity of the study methods. Later, it 

discusses the respondents' backgrounds and conducts a descriptive analysis of the research 

variables. Finally, it explains the results of statistical analysis used to test the hypotheses 

and discusses the findings and conclusions drawn from them. 

 

4.2 Sample 
 

The survey was sent to 256 recipients. 53 responded, giving the survey an 20.71% 

response rate, with 51 fully completing the surveys. One of the respondents did not mention 

the country and another did not mention the years of experience. To maintain the integrity 

of the data, the 2 responses that were not fully completed were removed. These responses 

were a small percentage of the collected data (less than 10%), and Pigott (2001) stated that 

complete-case analysis can still represent the sample reliably when only a small percentage 

of surveys have not been completed. 
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4.3 Type of Respondents 

 

Most of the respondents were Radiologists (45.10%), followed by Clinician 

(23.53%), AI enthusiasts (11.76%), Clinician/Researcher and Data Scientists (Figure 7). 

 

 

 
 

Figure 7 Distribution of Respondents 

 

 

 
4.4 Experience of Respondents 
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The participants in this survey were predominantly in the range of 10-15 years of 

experience (39.22%). The years of experience had majority in the more than 10-15 years 

range (40.4%), followed by more than 15 years (21.2%) and 5-10 years (21.2%) and 0-5 

years (15.4%) (Figure 8). 

 

 
 

Figure 8 Experience of Respondents in relevant Field, Role, or Area 

 

 

 
 

4.5 Respondents Location data 
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Most of the sample (35.29%) lived in India, followed by USA, (25.49%) and 

Germany (11.76%) the only other countries with a higher than 1% representation in the 

sample (Figure 9). 

 

 

 

 
Figure 9 Respondents Location Data 
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Since knowledge of federated learning and experience in AI-based tools will impact 

the respondents’ thoughts a question was asked on federated Learning whether they have 

knowledge of federated Learning. 

 

 

 

 
4.6 Respondents Knowledge of Federated Learning 

 

Of 51 respondents, 44(86.3%) had knowledge of federated learning and 7(13.7%) 

had no knowledge of federated Learning (Figure 5). 

 

   
Frequency 

 
Percent 

 
Valid Percent 

Cumulative 

Percent 

Valid No 7 13.7 13.7 13.7 

 Yes 44 86.3 86.3 100.0 

 Total 51 100.0 100.0  

 

Table 2 Respondents Knowledge of Federated Learning 
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Figure 10 Respondents Knowledge of Federated Learning 

 

 
4.7 Respondents Level of Knowledge of Federated Learning 

 

Out of the 44 respondents who had knowledge of federated learning, 23 (52.27%) 

had moderate level of knowledge, 8 respondents had high level of knowledge, 1 respondent 

had very high and 5 (9.8%) had very low (Figure 6). 

In case respondent chose Yes then level of perceived knowledge in Likert scale was 

 

(1) Very low 

 

(2) low 

 

(3) moderate 

 

(4) High 
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(5) Very High 
 

 

 
 

 
Frequency 

 
Percent 

 
Valid Percent 

Cumulative 

Percent 

Valid 1 5 9.8 11.4 11.4 

 2 7 13.7 15.9 27.3 

 3 23 45.1 52.3 79.5 

 4 8 15.7 18.2 97.7 

 5 1 2.0 2.3 100.0 

 Total 44 86.3 100.0  

Missing System 7 13.7   

Total  51 100.0   

 

Table 3 Respondents Level of Knowledge of Federated Learning 
 

 

 

Figure 11 Respondents Level of Knowledge of Federated Learning 
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4.8 Respondents Currently Users of AI-Based Tool for Radiology Clinical 

Workflows 

Out of 51 respondents 21 (41.2%) were currently a user of AI-based tools for 

radiology workflows (Figure 12). 

 

 
Frequency 

 
Percent 

 
Valid Percent 

Cumulative 

Percent 

Valid No 30 58.8 58.8 58.8 

 Yes 21 41.2 41.2 100.0 

 Total 51 100.0 100.0  

 

 

Table 4 Respondents Currently Users of AI-based tool for Radiology Clinical Workflows 

 

Figure 12 Respondents Currently Users of AI-based tool for Radiology Clinical 

Workflows 
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4.9 Respondents Currently Users of AI-Based Tool for other than Radiology 

Clinical Workflows (For example: Ophthalmology) 

 
Out of 51 respondents 15 (29.4%) were currently a user of AI-based tools for 

other than radiology workflows ( 

Figure 13). 
 
 

 
Frequency 

 
Percent 

 
Valid Percent 

Cumulative 

Percent 

Valid No 36 70.6 70.6 70.6 

 Yes 15 29.4 29.4 100.0 

 Total 51 100.0 100.0  

Table 5 Respondents Currently Users of AI-based tool for other than Radiology Clinical 

Workflows 
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Figure 13 Respondents Currently Users of AI-based tool for other than Radiology 

Clinical Workflows 

 

 
4.10 Respondents who Participated/Contributed to Research or Experiments 

related to Federated Machine Learning or Currently Intent to do. 

 

Out of 51 respondents 22(43.1%) either participated or contributed to research or 

experiments related to federated learning or they intent to do as (Figure 9). 

 

   
Frequency 

 
Percent 

 
Valid Percent 

Cumulative 

Percent 

Valid No 29 56.9 56.9 56.9 

 Yes 22 43.1 43.1 100.0 

 Total 51 100.0 100.0  
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Table 6 Respondents who Participated/Contributed to Research or Experiments related to 

Federated Machine Learning or currently intent to do 
 

 

Figure 14 Respondents who Participated/Contributed to Research or Experiments related 
to Federated Machine Learning or Currently Intent to do 

 

 
4.11 Respondents Perceived Trustworthiness vs Adoption intent 

 

H1: User perception of federated learning’s trustworthiness has a positive correlation with 

user adoption intent of AI-based tools in medical imaging in radiology. 

H1 studied the correlation between how trustworthy an algorithm is and whether 

the perceived trust impacts user adoption intentions. For the analysis, a Pearson’s 

correlation was run on the average of the responses from the five questions in the 
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trustworthiness and adoption intent section, with 1 being "strongly disagree" and 5 being 

"strongly agree. The mean from the responses in the trustworthy section was 3.77 with a 

standard deviation of .67. The mean from the responses in the adoption intentions section 

was 4.01 with a standard deviation of .72. 

 

Descriptive Statistics 

N Minimum Maximum Mean Std. Deviation 

PT 51 1.00 5.00 3.7725 .67174 

INT 51 1.00 5.00 4.0157 .72756 

Valid N (listwise) 51     

 

Table 7 Respondents Perceived Trustworthiness vs Adoption intent - Descriptive Statistics 

 

 

 
To examine H1 ("User perception of federated learning’s trustworthiness has a 

positive correlation with user adoption intent "), a Pearson's correlation was run on these 

two variables. The analysis shows a statistically significant (r=.549, p<.001) positive 

correlation between the two variables as per Table 8. The R-value is .549, so the effect size 

is medium since it is greater than 0.5 based on common effect size indices (Sullivan and 

Feinn, 2012). 

Therefore, we can accept the hypothesis that states there is a positive relationship 

between perceived trustworthiness and users’ adoption intent. Pearson product correlation 

of Perceived Trustworthiness vs Adoption intent was found to be moderately positive and 

statistically significant (r=.549, p<0.01) (Table 8). Hence H1 is supported, This shows that 

an increase in perceived trustworthiness would lead to higher adoption intent of users. 

 

  Correlations  
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  PT INT 

PT Pearson Correlation 1 .549** 

 Sig. (2-tailed)  <.001 

 N 51 51 

INT Pearson Correlation .549** 1 

 Sig. (2-tailed) <.001  

 N 51 51 

**. Correlation is significant at the 0.01 level (2-tailed).  

 

Table 8 Respondents Perceived Trustworthiness vs Adoption intent – Correlations 

 

 
4.12 Respondents Perceived Robustness vs Adoption intent 

 

H2: User perception of federated learning’s robustness has a positive correlation with user 

adoption intent of AI-based tools in medical imaging in radiology 

  Descriptive Statistics  

N Minimum Maximum Mean Std. Deviation 

PR 51 2.60 5.00 3.7412 .52352 

INT 51 1.00 5.00 4.0157 .72756 

Valid N (listwise) 51     

 

Table 9 Respondents Perceived Robustness vs Adoption intent - Descriptive Statistics 

 

H2 studied the connection between the user perceived robustness of federated 

learning algorithm and how it correlated with the user adoption intentions. To analyze the 

relationship, the average response from the five questions in the Perceived Robustness 

section of the survey was correlated against the average response from the five questions 

in the adoption intent section. The average mean from the survey responses in the perceived 

trustworthiness section was 3.74, with a standard deviation of .523. The average mean from 
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the adoption intention section was the same as in the previous analysis at 4.01 with a 

standard deviation of .727 (Table 9). 

To examine H2 (“User perception of federated learning’s robustness has a positive 

correlation with user adoption intent of AI-based tools in medical imaging in radiology”), 

Pearson product correlation of Perceived Robustness vs Adoption intent was found to 

positive with small effect size and statistically significant (r=0.303, p=0.05) (Table 10). 

Hence H2 is supported, This shows that an increase in perceived robustness would lead to 

higher adoption intent of users. 

 

  Correlations  

 PR  INT 

PR Pearson Correlation 1 .303* 

 Sig. (2-tailed)  .031 

 N 51 51 

INT Pearson Correlation .303* 1 

 Sig. (2-tailed) .031  

 N 51 51 

*. Correlation is significant at the 0.05 level (2-tailed).  

 

Table 10 Respondents Perceived Trustworthiness and Robustness vs Adoption intent 

 

 
4.12 Respondents Perceived Trustworthiness and Robustness vs Adoption 

intent 

 

H3: User perception of federated learning’s trustworthiness and robustness have a 

positive correlation with user adoption intent of AI-based tools in medical imaging in 

radiology. 
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H3 studied the impact of both perceived trustworthiness and robustness on user 

adoption intent. For this analysis, multiple linear regression was used. Trustworthiness and 

Robustness were the independent variables, and adoption intent was the dependent 

variable. 

 
 

Model Summaryb 

Std. Error 

 
Change Statistics 

 
Model R R Square 

Adjusted 

R Square 

of the 

Estimate 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .549a .302 .273 .62046 .302 10.376 2 48 <.001 

a. Predictors: (Constant), PR, PT 

  b. Dependent Variable: INT  
 

Table 11 Respondents Perceived Trustworthiness and Robustness vs Adoption intent - 
Model Summary 

 

 

 

 

ANOVAa 

 
Model 

 Sum of 

Squares 

 
df 

Mean 

Square 

 
F 

 
Sig. 

1 Regression 7.989 2 3.994 10.376 <.001b 

 Residual 18.479 48 .385   

 Total 26.467 50    

a. Dependent Variable: INT     

 b. Predictors: (Constant), PR, PT      

 

Table 12 Respondents Perceived Trustworthiness and Robustness vs Adoption intent – 

ANOVA 
 

 
 

  Coefficientsa    

 
Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

 
t 

 
Sig. 

95.0% Confidence 

Interval for B 
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B 

 
Std. Error 

 
Beta 

  Lower 

Bound 

Upper 

Bound 

1 (Constant) 1.727 .660  2.615 .012 .399 3.055 

 PT .586 .154 .541 3.801 <.001 .276 .897 

 PR .020 .198 .015 .103 .918 -.378 .418 

 a. Dependent Variable: INT        
 

Table 13 Respondents Perceived Robustness and Robustness vs Adoption intent – 

Coefficients 

 

In the analysis, both perceived trustworthiness and robustness had a statistically 

significant impact on the user adoption intent. The results from indicate, that the average 

of the trustworthiness variable had a positive unstandardized beta of .586 and the average 

of Robustness had a positive unstandardized beta of 0.20. The model also has an adjusted 

r-squared of .273, which indicates a moderately positive relationship (Ratner, 2009). 

The results from linear regression could find statistically significant influence 

perceived trustworthiness and robustness had positive increase in the adoption intentions 

of users. We can accept the hypothesis that there is a positive relationship between both 

trustworthiness and robustness and users’ adoption intent. 

 

 
4.13 Other Findings 

 

After comparing the means of Perceived Trustworthiness, Perceived Robustness 

and Adoption intent, three additional factors were discovered, and these are presented 

below. 

 
 

4.13.1 Respondents Difference between Experience Groups 
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The years of experience had majority in the more than 10-15 years range (40.4%), 

followed by more than 15 years (21.2%) and 5-10 years (21.2%) and 0-5 years (15.4%). 

An analysis of the experience ranges showed a potential difference in perceived 

adoption intentions in respondents in range of 10-15 years. The response rate was 

significant in the range of 10-15 years (40.4%). The experience ranges from 0-5 years 

showed highest adoption intent but the respondents were lowest (15.4%) (Table 14). Future 

research could examine how the 0-5 years and 10-15 years’ experience group’s perception 

on adoption intent differ from other experience groups. 

 

  Respondents Difference between experience groups  

Mean 

Your experience in relevant field, 

role, or area. 

 

PT 

 

PR 

 

INT 

a. 0-5 years 3.3250 3.5500 4.2500 

b. 5-10 years 3.8000 3.8000 4.0727 

c. 10-15 years 3.8800 3.9200 3.8500 

d. More than 15 years 3.8667 3.5167 4.0833 

Total 3.7725 3.7412 4.0157 
 

Table 14 Respondents Difference between experience groups – Mean 

 

 

 
4.13.2 Respondents Level of Knowledge in Federated Learning 

Of 51 respondents, 44 (86.3%) had knowledge of federated learning and 7 (13.7%) 

had no knowledge of federated learning. 
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Out of the 44 respondents who had knowledge of federated learning, 23 (52.27%) 

had moderate level of knowledge, 8 respondents had high level of knowledge, one 

respondent had very high and 5 (9.8%) had very low. 

In case respondent chose Yes then level of perceived knowledge in Likert scale was 

 

(1) Very low 

 

(2) low 

 

(3) moderate 

 

(4) High 

 

(5) Very High 

 

  Respondents Level of knowledge in Federated Learning  

Mean 

 
If answer is “Yes” for question 

4, according to you what is your 

level of knowledge of Federated 

Learning? In case answer is "No" 

to question 4, please skip this 

question. 

 

 

 

 

 

 
PT 

 

 

 

 

 

 
PR 

 

 

 

 

 

 
INT 

1 3.4800 3.4400 3.6400 

2 3.2857 3.5714 3.1429 

3 3.9667 3.8083 4.2083 

4 3.7500 3.8250 4.2250 

5 3.2000 3.0000 3.8000 

Total 3.7511 3.7156 3.9733 

 

Table 15 Respondents Level of knowledge in Federated Learning – Mean 

 

 
Another insightful observation was the correlation of level of knowledge in 

federated learning with the perceived adoption intent. The respondents with moderate and 
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high level of knowledge had same mean for adoption intent (4.2). While respondents with 

very high knowledge also had significant mean for adoption intent (3.8) (Table 15). These 

could be stronger connection with the level of knowledge of federated learning. Further 

studies can be conducted in this area to understand whether increase in knowledge had 

positive or negative influence in perception of adoption intent. 

 

 

 
 

4.13.3 Type of Role among Respondents 

 

 
Most of the respondents were Radiologists (45.10%), followed by Clinician 

(23.53%), AI enthusiasts (11.76%), Clinician/Researcher and Data Scientists. 

Another noteworthy finding that could encourage further research is related to the 

type of respondents and how that impacts the answers to question on trustworthiness, 

robustness, and adoption intent. There appears to be potential difference in type of role. 

The respondents who were radiologists have relatively lower level of perception when 

compared with other respondents. The other respondent like project leads and researcher 

had very high perception. This may also be due to the bias. The clinicians and AI 

enthusiasts had almost similar levels of perception. 

 

 

 

 

 
 

  Type of role  

Mean  
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Which one among below roles 

describes you the best? 

 

 
PT 

 

 
PR 

 

 
INT 

Clinician 3.7500 3.8000 4.0667 

Apps specialist (Radiology) 4.3000 4.5000 4.5000 

Radiologist 3.6609 3.6783 3.8522 

Clinician, EM and Ai ML 

practitioner and researcher 

5.0000 3.0000 5.0000 

Data scientist 3.8667 3.8000 4.3333 

AI enthusiast 3.8333 3.8000 3.9667 

Medical Student 3.4000 3.8000 3.4000 

Pathologist 4.0000 3.5000 4.1000 

R&D Project Lead 3.6000 3.6000 5.0000 

Total 3.7725 3.7412 4.0157 
 

Table 16 Type of role – Mean 

 

 

 
 

4.14 Summary of Findings 

 

The descriptive statistics, mean and standard deviation was calculated for two 

dependent variables – Trustworthiness and Robustness and independent variable – 

Adoption intent. Pearson correlation analysis was performed, and r values showed 

statistically significant with moderately positive correlation. Hence Hypothesis 1 and 2 was 

positively supported. A linear regression analysis was performed to understand the 

correlation of combination of Trustworthiness and Robustness with Adoption intent. 

Unstandardized Coefficients B value was positive for Perceived trustworthiness and 

perceived robustness. Therefore, it was concluded that Hypothesis 3 was also positively 

supported. 
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Also, it can be concluded that difference in experience, levels of knowledge in 

federated learning and type of role of respondents had difference in answering the 

questionnaire and their perception. 

 

 

 
 

4.15 Conclusion 

 

The results conclude that: 

Hypotheses: 

H1: The independent factor User perception of federated learning’s trustworthiness are 

statistically significant and influence positive correlation with dependent factor user 

adoption intent of AI-based tools in medical imaging in radiology. 

H2: The independent factor User perception of federated learning’s robustness are 

statistically significant and influence positive correlation with dependent factor user 

adoption intent of AI-based tools in medical imaging in radiology. 

H3: The independent factors User perception of federated learning’s trustworthiness and 

robustness have a positive correlation with user adoption intent of AI-based tools in 

medical imaging in radiology. 
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CHAPTER V: 

DISCUSSION 

 

 

5.1 Discussion of Results 

 

Federated learning is a technique for training machine learning models with the 

with remotely hosted datasets without the need to accumulate data and, therefore, 

compromise it. Data is collected, processed into a dataset, and taken to the central server 

to train the dataset into any model, and we achieve a predictive output. It helps us to take 

the algorithm to the data instead of doing this federated learning, and then carry the result 

to the central server. This implies that the user would not be asked to upload their individual 

information. Predictive maintenance is given by federated learning. According to the 

outcomes in the central server, predictive maintenance allows a forecast of when the system 

will need maintenance. 

In the healthcare domain, federated learning use cases for devices would allow the 

user to learn a model of machine learning that will help patients improve certain aspects of 

their health without having to upload their data to a central cloud. Federated learning entails 

using a wide corpus of high-quality decentralized data distributed through several client 

devices for instruction. Since the model is trained on client computers, no data from the 

user is expected to be submitted. Keeping the client's personal data on their computer gives 

them clear and physical control of their information. 
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The goal of this research was to analyze the impact of trustworthiness and 

robustness of federated machine learning algorithm approach in AI-based tools in 

radiology medical imaging and ascertain how these affect the intentions of adoption of AI- 

based tools in radiology by users. 

The study was limited in scope, but it provides a baseline and a preliminary look at 

the effectiveness of general factors that impact developers to pursue their research and 

build business models using federated learning approach. 

The findings reveal a significant correlation between perceived robustness and 

trustworthiness and adoption intentions, while also postulating logical next steps for future 

research and highlighting the implications for the business and academic worlds. 

This study sought to answer the question " What are the associations of federated machine 

learning approach over traditional machine learning towards perceived trustworthiness and 

robustness and its prediction with user’s adoption intent of AI-based tools in radiology 

medical imaging?” 

The question led to two hypotheses that observed each of the independent variables 

(trustworthiness and robustness) and their correlation with adoption intentions. The third 

hypothesis studied the relationship between trustworthiness/robustness and adoption 

intentions. The findings showed that the variables have a positive correlation with adoption 

intentions and that, in this study, user perceived trustworthiness and robustness positively 

sway user adoption intentions. 



127  

 
 

5.2 Discussion of Research Hypothesis 1 and 2 

 

H1 & H2 examined specific user attributes (trustworthiness and robustness) and 

how they correlated with adoption intentions. Prior to the study, I presumed that these 

would have a positive impact but was unsure how impactful they would be. 

Due to effect size (r=.549 for H1 and r=.303 for H2), it can also be stated that there 

is a moderately positive effect (medium) for trustworthiness and positively small effect for 

robustness individually in correlation with adoption intentions. Therefore, each of these 

variables will independently impact adoption intentions. 

 

 

 
 

5.3 Discussion of Research Hypothesis 3 

 

The results from linear regression could not find statistically Significant influence 

perceived robustness had positive increase in the adoption intentions of users. The average 

of the trustworthiness variable had a positive unstandardized beta of .586 and the average 

of Robustness had a positive unstandardized beta of .020. We can accept the hypothesis 

that there is a positive relationship between both trustworthiness and robustness with users’ 

adoption intent. 
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CHAPTER VI: 

 
SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

 

 

6.1 Summary 

 

This study can also serve as a starting point for further empirical studies in the 

context of individual adoption of federated learning in AI-based medical devices. 

To advance further with use of AI-based tools in medical imaging, machine 

learning vendors and users must adapt federated learning approach. To assess the business 

value of investing and deploying federated learning approach, it is critical to understand 

the influence of perceived trustworthiness and robustness of federated learning algorithm 

with user adoption intent. 

The results of the findings indicate that there is positive correlation of 

trustworthiness and robustness of federated machine learning models which influences the 

user adoption intent of AI-based tools in radiology medical imaging. 

 

 
6.2 Implications 

6.2.1 Business Implication 

 

A thorough understanding of user attitudes and perceptions is required for 

successful implementation of an AI-based system (Romero-Brufau et al., 2020). Due to 

concerns about the reliability and robustness of AI-based tools, healthcare professionals 
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still express fundamental concerns about implementation leading to adoption challenges 

(Kaissis et al. events, 2020). 

In this machine learning process, when the model shifts to using federated machine 

learning versus traditional machine learning, based on the results of document search and 

in my opinion, there is a gap in understanding of the accuracy of the data. perceived 

reliability and robustness of federated and correlated machine learning algorithms. for the 

purpose of user acceptance. Masud et al., (2019) conclude that in general, radiologists' 

perceptions have not been taken into account and the details of implementation methods 

for applying machine learning tools are unclear and unresolved. report. 

Most respondents were radiologists (45.10%) and different countries, including the 

United States, Germany and India, were well represented in the study. Of the participants, 

41% used AI-based tools in radiology. Perception of federated learning as perceived is 

average. Approximately 43.1% have participated or contributed to research or testing on 

federated learning. 

The results provide valuable information on awareness, knowledge, and 

involvement in federated learning. Research indicates that there is a positive correlation 

between users' perception of trustworthiness and strong and their intention to accept. The 

results give confidence in the development and use of federated learning, as it represents a 

step change in the way AI-based services are delivered. User acceptance is essential as it 

will involve investment and accountability in using AI-based tools due to specific 

development management, expertise and IT infrastructure requirements as well as share 

machine learning models from a specific institution or hospital. 
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To dispel those doubts about the timing, whether related to the installation 

procedure or the time the radiologist will need to spend getting the proper training and 

familiarity with the software. 

On the hospital/clinic side, there are methods, including Turnaround Time (TAT), 

that can be used to objectively measure productivity in radiology and thus understand time 

savings. time thanks to AI (Griffith, Kadom and Straus, 2019). 

With regard to monetary matters, the hospital/clinic can always perform various 

analyzes to determine the return on financial investment of the RN. These analyzes are 

typically done in the form of a health technology assessment (HTA) that will provide the 

most transparent way to drive value for money in healthcare. In general ETS terminology, 

budgetary impact analysis (BIA) assesses the short- and medium-term financial 

consequences of introducing new technologies (Mauskopf et al., 2007). BIAs are often 

presented in conjunction with other economic assessments, such as cost-effectiveness 

analyses, assessing both costs and, importantly, the impact of alternative health 

interventions (such as survival rate or quality-adjusted life years (QALY). 

 

 

6.2.2 Academic Implication 

 

Federated learning offers a secure collaborative machine learning framework for 

different devices without sharing their private data. This attracted a lot of researchers and 

there is extensive research happening in this domain. There is a growing interest in research 
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about AI-centric technologies, yet individuals have not integrated AI devices into many 

aspects of their lives 

 

 

6.3 Recommendations for Future Research 

 

One promising research direction would be to examine public opinion in other 

healthcare settings, such as when federated learning-based AI tools are deployed and used 

in hospitals and hospitals. Healthcare professionals recommend patients to use AI devices. 

Further research is needed to examine user perceptions of value in situations where 

the use of AI devices under federated learning can be a required part of diagnostic 

performance and complete the treatment for the patient. There is little research on AI 

perception, and clinical researchers can provide insights into public perception. 

In addition, "robust" as a predictor needs to be further evaluated after 

implementation in a real clinical setting, as federated learning is still in the 

conceptualization phase of R&D and Actual commercialization will differ in the 

performance of the algorithm compared to the traditional machine learning algorithm due 

to several factors and disadvantages discussed. 

Finally, public perception of AI in healthcare using federated learning may be 

limited by their knowledge of AI definitions and capabilities, as highlighted by our finding 

that there is a need to improve public knowledge of AI. Therefore, it is not possible to 

assess the priority or importance of each perception and need. 
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Developing an AI technology 

 
 

1. Identify regulatory requirements. 

 

The regulatory framework for AI is evolving. While most regulatory frameworks 

deal with data protection, data security, and privacy, the new governance guidelines cover 

equal access and human autonomy. Compliance measures must be included in the 

development and updating of technology. 

Specific Considerations: 

 

– Comply with country or region-specific export guidelines and rules, such as EU GDPR, 

Singapore Data Protection Act or Data Portability United States and liability for health 

insurance. 

- Define open concepts and open standards that must be specified for compliance, for 

example, in Article 22 GDPR, "far-reaching" in "People who may not only be subject to 

automated decision-making with far-reaching effects". 

– Identify relevant open standards and concepts that can be demonstrated to affected 

parties and professionals with relevant knowledge of the application. 

 

 

 

 

 

2. Establish data management plans. 
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Clear protection guidelines and management plans should be established for data 

collection, storage, organization, and access to ensure data security and maintain privacy 

and security. 

Specific Considerations: 

 

– Understand the requirements and regulations for data collection and sharing in potential 

user countries, sectors, and organizations, including legal requirements for managing 

privacy consent to the use of training data. 

– Defines the type of data to be collected and where and how it will be stored. 

 

– Evaluates the physical infrastructure and operational processes that can be used to ensure 

data integrity and security. 

– Understand and define how security and privacy will be protected in different contexts. 

 

– Establishes guidelines and protocols for the collection, storage, organization, access and 

use of personal data, proprietary data, and public data in various contexts. 

– Define how long data is stored, when data can be shared, and other temporal 

considerations. 

– Prioritize the use of anonymous data whenever possible. 

 

– Identify who is responsible for data governance and ensure proper follow-up. 

 

– Clearly define all teams that will have access to data throughout the product lifecycle. 

 

– Identifies any type of secondary data usage that may be allowed. 

 

 

 

 

3. Adopt standards and best practices. 
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Ensure compliance and/or interoperability of AI technology with other 

technologies to be incorporated into healthcare systems. One or more established 

international, regional, or national performance standards and/or benchmarks for AI 

technology must be applied in accordance with regulations, guidelines and application 

requirements, design plans and develop. 

Specific Considerations (Sample Standard): 

 

– ISO Standard (Security and Privacy) 

 

– US National Institute of Standards and Technology (Security and Privacy) 

 

– IEEE Series 7000 (Privacy and Equity) 

 

– Health Level 7 (Transfer of administrative rights and clinical health data). 

 

 

 
Clinical Deployment 

 
 

Successful implementations of AI in clinical workflows must be free of inequities 

and errors. What is needed is an appropriate and ethical AI that translates into more 

equitable care. The more data it captures, the more accurate and general it becomes. 

The recipe for successful deployment is to understand the data in which the models 

are built and the environment in which they are deployed. The four key considerations 

during development and implementation are: data assessment, model boundary planning, 

community involvement, and trust building. 

Identifying inequities in the data and taking them into account will lead towards 

more equitable healthcare as data quality largely determines model quality. Procuring the 
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right datasets is the key and it may depend on data collection techniques. There are various 

methods to remove bias in data. An expert discussion and labeling adjudication can address 

Individual-level bias. 

A population-level bias can be addressed via missing data supplements and 

distributional shifts. To determine the generalizability of models across different 

populations, medical devices, resource settings, and practice models, international multi- 

institutional assessment is an effective method. In addition, using multitasking learning to 

train models to perform a variety of tasks makes them more useful and often more 

powerful, rather than a narrowly defined task, such as development. showing many cancers 

from histopathological images. 

A well-established transparent reporting process can reveal potential weaknesses 

and help address model limitations. Sufficient controls should be in place to protect against 

worst-case scenarios such as minorities, layoffs, or automation bias. An understanding of 

the specific cases in which the model fails is required. Models should be assessed for 

demographic performance to check for potential biases. 

Inadaequate distribution of data during model training could lead to limitations in 

performance. It is critical to develop detection of out-of-distribution data and help detect 

anomalies. Additionally, methods are being developed to understand the uncertainty 

around model performance. This is especially important when making patient-specific 

predictions that affect safety. Involvement of all stakeholders such as patients, physicians, 

IT professionals, and other stakeholders is key to a successful implementation. This 
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identified causes of racial bias, specifically by uncovering bias in the dataset and 

identifying demographics where the models failed. 

Usability test results are valuable to ensure they are suitable for real-world use. This 

is considered the best way to evaluate model results to support clinical decision making 

and deployment in resource-constrained environments, such as areas with intermittent 

connectivity. For example, when rolling out ML-powered diabetic retinopathy models in 

Thailand and India, the researchers found that the model's performance was influenced by 

socioeconomic factors and determined that the place where the model is most useful cannot 

be where the model is generated. It has also been found that ophthalmic models may need 

to be implemented in endocrinology care, as opposed to ophthalmology centres, due to 

accessibility issues in specific local settings. AI models will require rigorous evaluation 

through clinical trials to assess safety and effectiveness. Another effective way to give 

doctors confidence in AI results is to parallelize ML models with existing workflows (e.g. 

manual scoring). AI can also help support clinical trials through a number of applications, 

including patient screening, tumor monitoring, side effect detection, and more, creating an 

ecosystem in which AI can help design secure AI. 

Trust in AI is the foundation for both clinicians and patients to adopt. The 

foundation of clinical confidence will largely come from rigorous prospective trials that 

validate AI algorithms in real clinical settings. These real-world usage environments 

incorporate responses where real-world conditions can be difficult to predict and that AI 

technologies must account for. The randomness and human factors of the clinical setting 

cannot be captured in retrospective studies. Prospective trials are best considered to reflect 
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clinical practice with measurable benefit in real-world implementation. AI must be 

explainable. Predictive models should be able to describe why specific environmental or 

patient factors led them to their predictions. In addition to clinical trust, patient trust, 

privacy issues need to be addressed. A significant need is for next-generation regulations 

that take into account advances in privacy-preserving techniques. ML often does not 

require traditional identifiers to produce useful results, but there are important signals in 

the data that can be considered sensitive. To unlock insights from these types of sensitive 

data, the development of privacy protection techniques must continue and new advances 

must be made in areas such as federated learning and analysis. 

 

 

Improving AI technology after deployment 

 

Multiple stakeholders need to be involved and trained for implementation and 

maintenance. Ensuring a better understanding of needs and building tailored solutions for 

multi-stakeholder inclusion should be a cross-cutting priority. 

Specific considerations: 

 

- Clearly define responsibilities for what, when, and how. 

 

- Design, discuss and validate the proposed approach with various stakeholders in all 

targeted areas, including policymakers, project owners and managers projects, project 

managers, engineers and solution developers, potential users, domain experts, and 

information privacy and ethics experts. 
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- Educate stakeholders on why, how, and when to use the tool, including its main purposes, 

functions and features, and differences between use cases, if applicable. 

– Continually engage with stakeholders and support users. 

 

 
 

2. Evaluate and improve performance. 

 

The health care outcomes and impacts of AI technology must be formally assessed, 

and the design and development of the technology must be continuously improved 

according to the ethical principles that guide its development. as well as new guidelines, 

governance and all applicable legal obligations and regulations. The risks of the technology 

and its intended use in different healthcare environments must be assessed regularly to 

manage deployment, ongoing development, and maintenance. 

The accuracy and error risk of AI technology needs to be assessed to assess the impact on: 

 

– Integrate, verify, and validate changes to a tool or system. 

 

– monitor and ensure the effectiveness and usefulness of a tool or system over time; – how 

long the results or technology can be used. 

– tool or system update frequency; and 

 

- the person responsible for updating 

 

 

 

 

 

 

 
Transparency and explainability of AI-based devices 
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Machine learning black boxes create challenges for regulators, who may not fully 

appreciate new AI technologies because of the standard metrics used to assess their safety 

and effectiveness. medical knowledge as well as scientific understanding and clinical trials 

do not fit into the medical black box. Complex algorithms are difficult for regulators (partly 

due to their lack of expertise) and difficult to explain to developers. 

Improving the scientific understanding (explainability) of algorithms is considered 

essential to ensure that regulators (as well as clinicians and patients) understand how a 

system makes decisions. Explainability is also a requirement of the EU GDPR and is being 

incorporated into law in other countries facing the proliferation of AI in healthcare and 

other areas. It is argued that, if there is a trade-off between transparency and accuracy, 

transparency prevails. However, this requirement may not be feasible or even undesirable 

in a medical context. While it is often possible to explain why a particular treatment is the 

best choice for a particular condition, it is not always possible to explain how that treatment 

works or how it works. inhibit its action, as medical interventions are sometimes used 

before their mode of action is understood. 

Confidence in expert decisions and recommendations depends on the expert's 

ability to explain why a given system is the best choice for achieving a clinical goal. These 

explanations must be based on reliable evidence of the AI system's superior accuracy and 

accuracy over alternatives. Proof should be generated by testing the system in the future in 

randomized trials, not by its performance against existing data sets in the laboratory. There 

is strong, prospective evidence for the system's performance in future clinical trials. An 

explanation of how a system arrives at a particular decision can encourage the use of 
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machine learning systems for purposes for which they are not suitable, since the models 

created by those systems are based on association. association between a bunch of 

variables, it doesn't have to be. reason. If the associations are causal, practitioners can rely 

on them to make decisions without the system being tested or validated. Requiring every 

clinical decision about AI to be "explainable" could also limit AI developers' ability to use 

AI technologies that outperform legacy systems but cannot solve them. like it. 

Clinical trials ensure that the hazards and unintended consequences of AI-enabled 

applications can be completely identified, addressed, and avoided, and further tested and 

monitored by AI devices approved can demonstrate the performance of such equipment 

and any changes that may occur after approval. Clinical trials, especially those conducted 

with different populations, can also reveal whether AI technology is biased towards certain 

subgroups, races, or ethnicities. (see below). If an algorithm is expected to change over 

time with new data, the validity of the results may be questioned. However, clinical trials 

may not be suitable because it takes a long time to conduct the test properly and incurs 

great costs. 

As AI-based technologies and products become increasingly personalized for 

smaller populations, it will be more difficult to test with enough people. Statistical analysis 

strategies and clinical trial design need to be reevaluated and innovation encouraged in 

these areas of AI validation. While AI needs to be validated in clinical trials or other means 

of adoption, AI itself has the potential to enable more precise testing of device or drug 

efficacy with large numbers of patients. than. approach. This may become relevant during 

the COVID-19 pandemic, as recruitment and access to medical facilities are difficult. 
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Regulators could introduce “softer pre-market assessments” in lieu of clinical trials 

for AI technologies for health, assessing the protections that regulators offer development, 

quality of data used, development techniques, validation process, and "robust post-market 

monitoring". However, this can be difficult to do in practice, especially with post- 

marketing surveillance of new algorithms, and it may be too late to avoid harming 

particularly vulnerable people, such as For example, people who do not have access to a 

health care provider can protect them from being misdiagnosed. or wrong advice. The 

transparency of the original data set can be improved, including where the data comes from 

and how it is processed, as well as the transparency of the system architecture. Such 

transparency will allow others to independently validate AI technology and increase user 

trust. 

While greater transparency of components of an AI system, including source code, 

input data, and analytical methods, can facilitate regulatory oversight, some transparency 

can can distract attention. Reviewing lines of code is time consuming and may not provide 

information on system performance, functionality, and accuracy before and after 

integration into a healthcare system. Management should provide incentives to encourage 

developers to identify and avoid biases. One example is adding metrics to a pre- 

certification program organized by the US Food and Drug Administration, the Digital 

Health Innovation Action Plan. The program evaluated medical software on the basis of 

excellence criteria, including quality. Quality and other criteria established by regulatory 

bodies may include the risk of bias in training data. Robust post-market monitoring to 

identify biases in machine learning algorithms, including working with vendors and 
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communities that may be impacted by biased algorithms, can improve regulatory 

supervision. 

The proper management of the private sector must overcome a number of obstacles. 

One is the strength of the many companies involved in providing AI for healthcare. Many 

of them employ former government and regulatory officials who are required to lobby and 

influence policymakers and regulators responsible for overseeing the work. using AI for 

healthcare. This could affect governments' ability to act independently of companies. A 

second challenge is that many technologies developed by companies are increasingly 

difficult to evaluate and monitor, in part due to their increasing complexity, including the 

use of black box algorithms and deep machine learning methods. Increasing complexity 

has encouraged both governments and businesses to consider "co-management" models, in 

which each relies on the other to evaluate and regulate a technology. While such 

surveillance models can help governments understand technology, they can limit the 

government's ability to exercise independent judgment and encourage them to believe that 

companies are willing to strictly self-regulate their activities. Improving private sector 

governance in other ways will require expertise and more independent inside information 

so that governments can effectively assess and regulate corporate activities. Therefore, 

improving the capacity of public regulators and transparency will play an important role in 

improving government oversight of the private sector. These measures could include 

greater transparency of data collected and used by private companies, how ethical and legal 

principles are integrated into company operations, and how products and services in 

practice, including how algorithms change over time. 
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Governments are increasingly required to disclose the use of algorithms in services 

and operations to promote accountability for AI use, and many data protection laws require 

decisions not to be made. show. prevented in certain contexts. In France, the government 

is required to provide a general explanation of the operation of any algorithm used by the 

government, a personalized explanation of the decisions made by the algorithm, an 

explanation of the decisions and publish the source code as well as other material on the 

algorithm. 

In general, governments are increasingly expected to be transparent about their use 

of AI, including whether they are investing in AI, entering into enterprise partnerships, or 

developing the technology in a transparent manner. independent in public companies or 

government agencies. Governments are also expected to be transparent about any harm 

caused by the use of AI and the steps taken to remedy any such harm. A study by the UK 

Commission on Standards in Public Life found that the UK government (during the period 

under review) failed to adhere to established principles of openness and noted that " 

According to the principle of openness, the current lack of information about government 

uses of AI risks undermining transparency." 

However, transparency may not be enough to ensure that government use of 

algorithms will not cause undue harm, especially to marginalized communities and 

populations. Greater public participation from a wide range of stakeholders is needed to 

ensure that decisions about the introduction of AI systems in healthcare and elsewhere are 

not made solely by public and business officials. out, but based on the public participation 

of more stakeholders. include representatives of public interest groups and leaders of 
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vulnerable groups who are not normally involved in making such decisions. Their opinions 

must be gathered before and not only after an adverse impact has been identified, i.e. it is 

too late. 

It is often argued that strict regulations limit innovation and deprive health care 

systems, providers, and patients of beneficial innovation. A balance must be struck between 

protecting the public and promoting growth and innovation. The medical use of AI is still 

new and often untested, and policymakers and regulators need to consider a variety of 

ethical, legal, and human rights issues. For example, regulators must identify AI-based 

applications and devices that could be described as "snake oil," a euphemism for 

misleading, fraudulent marketing in the industry. healthcare or fraud. follow health advice 

that may be contrary to their health. 

Applications that do not provide a therapeutic or health benefit may only be 

introduced to collect health and biological data for use in commercial marketing or to 

incentivize patients to pay for measures. unrelated or unproven health interventions. For 

example, academic data obtained from 300,000 Facebook users was told the data was for 

"psychological testing". Their data and the data of approximately 50 million other users 

associated with them ("Facebook friends") were then sold to Cambridge Analytica, which 

used this data to create predictive and influencing software. affect the selection at the ballot 

box. Malicious use of data collected on behalf of academic or healthcare purposes can 

expose healthcare systems, healthcare providers and service providers to Healthcare- 

related AI services are at significant risk. Regulation may vary based on risk, so that 

particularly vulnerable people, including people with mental illness, children and the 
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elderly, are protected from misinformation and bad advice from health apps instead of 

tapping to help these people. People living in resource-poor environments, in countries that 

do not have the resources to regulate and monitor the adverse consequences of AI 

applications, and suffer from diseases that lead to marginalization and discrimination. 

Treatments, such as HIV/AIDS or tuberculosis, also need more protection and oversight 

from regulators than users of lifestyle or healthcare apps. AI uses complex computer 

algorithms to simulate human perception, but is scalable to analyze large data sets. The 

field of AI is growing rapidly and has significantly infiltrated almost every aspect of human 

life, including healthcare. Incorporating AI-based tools and techniques is expected to 

improve healthcare delivery by making healthcare accessible and affordable, and at the 

same time improve the quality of care provided. For example, AI as well as radiologists 

can read CT scans automatically. Tuberculosis screening can be performed by AI using 

chest X-rays with comparable performance to molecular tests, and mammograms can be 

used to predict the onset of breast cancer before when the visual cues appear. Therefore, 

AI for health has been recognized by researchers as well as the government as one of the 

important areas. 

An ethically sound policy framework is essential to guide the development of AI 

technologies and its application in healthcare. In addition, as AI technologies evolve and 

are applied in clinical decision-making, it is important to have procedures in place to 

discuss liability in the event of errors to protect and protect guard. Like any other diagnostic 

tool, AI-based solutions themselves cannot be held accountable for their own decisions and 
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judgments. Therefore, it is important to hold responsibility at all stages of AI development 

and implementation for health. 

Despite all the potential benefits, the application of AI to healthcare highlights a 

number of ethical, legal, and social concerns, especially regarding its development and 

implementation. The field can be largely guided by well-established health research 

principles, but the development and implementation of AI-based solutions in healthcare 

face a number of challenges. challenges, including those related to data security, data 

sharing, data privacy, and so on. For example, AI-based solutions can empower the masses 

by enabling early and easy diagnosis and access to healthcare facilities, but the use of these 

tools and techniques without unsupervised risks. Therefore, a legal and ethical framework 

is required before health AI becomes part of health research and healthcare delivery. While 

general principles related to biomedical research and healthcare delivery are applicable to 

health AI, the field also has unique ethical considerations. 

When developing AI technology for health care applications, similar ethical 

principles can be followed. However, as AI technology presents some unique 

methodological and interpretive challenges and in the context of rapidly changing 

healthcare scenarios, the guidelines have been developed in consultation with experts. from 

these two fields. The purpose of these guidelines is not to constrain innovation or 

recommend specific disease-specific diagnostics or treatments, but rather to guide the 

effective development, implementation, and adoption of AI-based technologies. but safe in 

biomedical research and healthcare delivery. These guidelines will be used by experts and 

ethics committees reviewing research proposals related to the use of AI-based tools and 
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technologies. There is no standard and universally accepted term and thus the term AI 

technology has been used to refer to AI technologies, AI applications, AI models, AI 

products, AI-based solutions or AI-based solutions throughout the document. 

 

 

Trustworthiness 

 

Trustworthiness is the most desirable quality of AI-based tool in healthcare. 

Clinicians need to build trust in the tools that they use and the same goes for AI. In order 

to effectively use AI, clinicians and healthcare providers need to have a simple, systematic 

and trustworthy way to test the validity and reliability of AI technologies. In addition to 

providing accurate analysis of health data, a trustworthy AI-based solution should also be: 

i. Lawful, i.e., it must adhere to all applicable laws and regulations. 

 

ii. Ethical, to ensure adherence to ethical principles and values cherished by the 

community. Agencies involved in developing and deployment of AI should cultivate trust 

in the general public by adopting ethical principles at all stages of development 

iii. Reliable and valid, both from technical and social perspectives, to ensure predictability 

in the results and outcomes of AI-based solutions when applied in variety of clinical 

settings. The results thus obtained also should be in sync with standard assessment tools. 

iv. Explainable, i.e., the results and interpretations provided by AI-based algorithms should 

be explainable based on scientific plausibility. It should be possible to understand the logic 

behind the results obtained so that AI technology is valid, reliable and responsible. The 

lack of information about the decision-making by AI algorithms has prompted some to 
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label it as a “black box” which can prove a deterrent to its wider adoption. A well 

explainable AI-based solution is expected to improve the confidence of both the patient 

and the health professionals. 

v. A diagnostic AI technology may produce results that are not in line with the physicians' 

views/ decision on disease. Such situations may question the credibility of the system as 

well as the doctor. In such cases, the physician may seek the help of their colleagues or 

may consult with AI developers. The patient should be informed about the recommendation 

from both the doctor(s) and the AI technology. The patient must have the ultimate 

autonomy to choose over whether to accept or reject the AI technology-generated decision. 

vi. Transparent, i.e., Details about the development and deployment must be easily 

available to all the stakeholders to enable them to make an informed decision. AI 

developers should ensure transparency in every step so that consumers can make informed 

choices about sharing their data and using AI. The end user must be provided with adequate 

information in a language they can understand to ensure that they are not being manipulated 

by the AI technologies. The end-user must be informed about the intention, outcome and 

limitation of using AI technologies. In absence of transparent information about the 

processes involved it is difficult to expect large scale adoption of AI for Health. This is 

also important for legal and regulatory purposes in cases where undesirable clinical 

outcomes may arise out of the inaccurate interpretation and or recommendation by AI- 

technologies. Therefore, for the regulation, acceptance, and deployment of AI technologies 

transparency, explainability and functional understanding is necessary. Limitation in 
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transparency of the system impairs validation, clinical recommendations, and make it 

difficult to identify errors and biases. 

vii. Sufficient information must be published widely before deploying AI technologies in 

the health care sector. An adequate platform must be there to ensure the input of public 

consultation and debate regarding design, usage, safety security, etc. such information must 

be published regularly and must be documented. 

viii. All AI technologies must comply with legal norms. Developers must be able to 

demonstrate and interpret how the AI technology complies with data and privacy laws. All 

software/ privacy policy updates in an already established AI technology must comply with 

legal norms. 

ix. AI technologies must have an ethical responsibility to be as transparent as domestically 

developed AI technology and comply with the law. The assessment will cover all stages as 

with any domestically developed AI technology. 

x. Conflict of interest arising at any stage of development must be disclosed and made 

public on public platforms. 

 

 

Data Privacy 

 

AI-based technology must ensure privacy and protect personal data at all stages of 

development and implementation. Maintaining the trust of all stakeholders, including 

healthcare recipients, in the safe and secure use of their data is paramount to successful AI 

implementations and widely. Data security should aim to prevent unauthorized access, 
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modification and/or loss of personal data. The application of artificial intelligence to 

personal data must not unreasonably restrict the actual or perceived freedom of individuals. 

These practices are important in the healthcare industry, where medical information is 

sensitive data that, if misused, could harm patients or expose them to discrimination, even 

if it is not. love. Personal patient data should preferably be anonymized unless keeping it 

in an identifiable format is essential for research or clinical purposes. All algorithms that 

process patient data must ensure proper anonymity before any form of data sharing. It is 

important to know that patient identifiers can be presented as "metadata" and "image" data, 

and both must be effectively anonymized. Data ownership issues are complex and vary 

depending on national or regional laws and regulations. It also depends on the level of 

anonymity of the data. Because data to build AI applications is often gathered from a 

variety of sources (e.g., medical and insurance records, pharmaceutical data, genetic data, 

social media, data GPS, etc.), tracing this data back to the patient could potentially become 

easier and (intentionally or not) defeat privacy objectives. The existing data protection law 

in India is the Computer Act 2000. Subject to Section 43A, legal entities possess, process 

or otherwise process sensitive personal data or information in computing resources in their 

possession, control or operator will be liable for damages such as compensation to data 

subjects if they are negligent in implementing and maintaining reasonable security 

processes and procedures to protect data. or sensitive personal information. To ensure the 

privacy and security of healthcare data, the government of India is enacting a new 

healthcare data protection law – the Healthcare Digital Information Privacy Bill ( DISHA) 
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and personal data protection (PDP); these will tie into the ethical principles of AI 

technology. 

d. Users should have control over the data that has been collected from them for the purpose 

of developing and designing AI technologies for healthcare. Users must be able to access, 

modify or delete this AI technology data at any time. 

ii. End users should be clearly informed about safeguards designed to protect privacy. They 

must have knowledge of the type of data collected and how it is used, to develop AI 

algorithms or to interpret or store it. 

iii. AI technology's prediction algorithms can produce inconsistent results that could 

compromise patient privacy. Consent must be obtained before running the prediction 

algorithm on participants/patients. 

iv. AI technologies that require human biometric data should have additional security 

measures in place to protect the data. EC/regulatory authority approval is required to use 

this data. Such accidental data leakage could have unprecedented consequences 

v. An impact assessment should be carried out by the relevant authorities before 

implementing AI for widespread use. It should focus on key areas such as human rights, 

privacy, and ethical principles 

vi. The manufacturer is responsible for preventing re-identification from the dataset and 

preventing leakage of identifying information. 

vii. Sharing data may expose patients/participants to privacy threats. Additional patient 

consent is required to share data if not done previously. Consent must include the nature 



152  

 

of the data, to what extent it is shared, and the damages that may result from sharing the 

data. 

vii. Redundant data is collected contributing to redundant data. Reusing redundant data 

without patient/participant consent is unethical. Storing redundant data for future use may 

require additional consent, if not done earlier. 

 

 

Accountability and Liability 

 
 

Accountability is described as the obligation of an individual or organization to be 

accountable for its activities, to accept responsibility for its actions, and to disclose results 

transparently. AI technologies intended for deployment in the healthcare sector must be 

available for review by relevant authorities at any time. AI technologies undergo regular 

internal and external tests to ensure they function optimally. These audit reports must be 

made public. AI developers must allow independent analysis and testing of their 

i system. AI innovators may not be familiar with medical ethics, research regulations, and 

regulatory guidelines that apply to the field. Therefore, it is important to have healthcare 

industry representation at all stages of the development and implementation of AI-based 

tools and technologies. 

ii. Automation is the most direct benefit of AI-based solutions. Machine-assisted decision 

algorithms are increasingly being used in clinical medicine. However, the inherent risks of 

misinterpretation in clinical settings with full automation require caution. Therefore, unlike 

other areas of AI technology that often deploy unattended, AI for healthcare must always 
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be appropriately supervised. Open source software is also subject to ethical best practices 

to ensure that ethical considerations are not compromised at any time in the name of 

innovation. 

iii. The "Human In The Loop" (HITL) concept puts humans in a supervisory role and is 

more suitable for healthcare purposes. This will ensure healthcare professionals make 

personalized decisions that are in the best interests of the patient at the center. Applying 

HITL principles throughout the development and implementation of healthcare AI also 

contributes to optimal sharing of responsibility by the team involved in the development 

and implementation of intelligence-based algorithms. artificial AI. 

iv. It is essential to ensure that the entity or entities seeking liability has the appropriate 

legal and technical certifications in the field of health AI technology. 

v. AI-based solutions can malfunction, perform poorly, or make wrong decisions that have 

the potential to harm recipients, especially if left unattended. The healthcare professional 

who will use the technology will assign responsibilities. Like other diagnostic and decision- 

making tools used in clinical practice, the responsibility for optimal use of technology rests 

with the healthcare professional using AI-based solutions to deliver services. health care. 

vi. When implementing tools based on AI technology, liability for its use must be 

determined prior to clinical application or public use. 

vii. Liability for damage caused by the failure of AI technology depends on the nature of 

the cause of the damage. If the problem is primarily due to a functional defect, the designer, 

developer, or manufacturer may be held liable. If damage occurs as a result of faulty 

technology implementations, the end user or organization may be held liable. A clear 
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understanding and allocation of responsibilities is required before implementing AI 

technology. 

vii. If AI technology has caused damage, then an appropriate mechanism is needed to 

determine the relative roles of the parties involved in the damage, from the manufacturer 

to the user, and their liability. All stakeholders involved in conceptualizing the distribution 

chain must cooperate and work together to minimize harm. 

 

 
Optimization of Data Quality 

 

AI is a data-driven technology, its results mainly depend on the data used to train 

and test the AI. This is especially important in the field of health AI, as a skewed and 

insufficiently large dataset can lead to problems related to data bias, errors, discrimination, 

and more. Data trends are seen as the biggest threat to data-driven technologies like AI for 

healthcare due diligence is needed to ensure "training data" is free of biases known and 

representative of the majority of the target population. 

One of the main concerns he raised is that pre-existing bias arises in AI models 

when making decisions against a particular group of people, mainly due to human 

participation in the formation. into that data, obscuring the AI's judgment. The challenges 

inherent in machine learning, the logistical difficulties of implementation, and 

consideration of barriers to adoption as well as the necessary itineraries or sociocultural 

changes. 

Before implementing AI technologies, opportunities for bias should be carefully 

considered, identified, and considered. The training data should have no sampling bias. 
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Such sampling bias can affect the quality and accuracy of the data. Researchers must ensure 

the quality of the data. 

ii. The datasets used in AI technologies must adequately represent the population for which 

the technologies are intended to be used. Data on ethnic minorities, marginalized 

populations and remote areas must be fully representative, otherwise oversampling may be 

necessary to obtain the same quality of results observed with population groups are better 

represented. 

iii. The existence of bias in the data set has the potential to affect the operation of AI 

technology. If there are allegations of discrimination or signs of bias in AI technology, the 

operation of such a system will be temporarily halted. The manufacturer is responsible for 

eliminating bias. Proving unbiased AI technology with optimal functionality to the 

competent authority is required to continue operating. 

iv. Data collection and the development of AI algorithms present various challenges and 

trade-offs, and developers and researchers need to ensure that the best data can be used for 

the field. their specific use case. 

v. These inherent data problems can be mitigated through rigorous clinical validation prior 

to the use of any AI-based technology in healthcare. 

vi. All emerging technologies, including AI, must go through a well-established review 

process that applies to all areas of biomedical research and clinical care. In fact, it is prudent 

to implement a "test-before-deploy" process at each new location where AI is deployed so 

that AI performance can be guaranteed locally. A strong mechanism is needed to monitor 
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data collection methods, which can check the fairness and completeness of data collection 

and can point out inadequacies and misrepresentations 

vii . Poor data quality, inappropriate and incomplete data representation can lead to bias, 

discrimination, errors, and suboptimal performance of AI technology. 

 

 

6.4 Conclusion 

 

Digital health and AI are becoming increasingly important in medical imaging as 

the industry adopts new technologies and treatments. The next wave of digital disruption 

will be the use of artificial intelligence, and businesses should prepare for that now. Given 

the hype and gloom, AI has yet to be deployed on a large scale commercially. The adoption 

of AI-based tools in medical imaging has become a key driver of the technology. Machine 

learning (ML) is a way to enable AI's "learning" capabilities. It involves the use of a set of 

learning algorithms driven by mathematical techniques that allow machines to learn from 

data, rather than being explicitly programmed to perform certain tasks. The training process 

uses a learning algorithm to derive relationships between data points from training data, 

usually a subset of historical data. The results of the training are trained machine learning 

models, which can make predictions or make decisions based on observed data patterns 

from user-supplied input data or queries. 

This growth has sparked new discussions about industry regulations, data 

collection, and most importantly, the enormous potential for treatment and patient 

outcomes. There have been significant advances in the use of AI algorithms in the field of 
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medical image analysis. Special deep learning has made continuous breakthroughs in 

radiology practice. The main consumer proposition for AI companies in the radiology 

market stems from the exceptional ability of AI tools to recognize complex patterns in 

imaging data. 

Medical imaging is said to have seen some of the most important developments in 

AI technology due to parallel improvements in machine vision. However, security and 

privacy concerns are not limited to medical imaging. 

As the adoption of AI applications in healthcare accelerates, the urgent need for 

proper governance to address ethical, regulatory, and trust concerns is urgent. 

The application of AI-based tools in medical imaging radiology is not yet 

recognized as a reliable tool to assist users. Current challenges related to data silos, 

generalization, and privacy issues need to be addressed in accordance with regulatory 

requirements. 

Federated Machine Learning has emerged as a promising method for building 

precise and robust algorithms that serve as tools to help users free up their workloads. In 

order to understand user acceptability, understanding the reliability and robustness of 

federated learning is essential to both the R&D investment of the developers of such tools. 

This study provides a basis for understanding users' perceptions of the reliability 

and strength of federated learning algorithms as well as their current perceptions of 

intention to adopt AI-based tools in radiology medical imaging. 

The results are encouraging as they indicate a positive correlation between user 

perceptions of reliability and durability as well as intention to use. Future research can be 
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conducted to gain a deeper understanding of users, especially radiologists, on how 

implementing federated learning will change the current standard of practice. 

Alternatively, patient perception of federated learning can be investigated after 

implementing federated learning algorithms in real-world clinical practice. 

Implementations of AI applications are considered special clinical projects similar 

to other clinical initiatives in hospitals. One of the key stakeholders and drivers for 

successful adoption of federated learning will be IT professionals in hospitals and 

operations. They will play a leading role in the structure. Further research involving these 

key stakeholders can be conducted to develop the governance framework. Medical imaging 

is a vast and complex field that encompasses many imaging modalities, disease states, and 

diagnostic protocols. Machine learning, on the other hand, is an active field of research 

with thousands of new techniques being published every year. The combined diversity of 

the two fields as well as inconsistent hospital practice, limited data sharing regulations, and 

lack of standard outcome reporting make it difficult to clearly assess its role and potential 

machine learning applications in medical imaging. Machine learning has great potential to 

improve diagnostic accuracy, reduce reporting times, reduce radiologists' workloads, and 

ultimately improve healthcare delivery. However, to realize this potential, a concerted 

effort is required from physicians, radiologists, patients, hospital managers, data scientists, 

software developers and stakeholders is different jurisdiction. 

Hospital procedures and practices vary widely between hospitals, even within the 

same geographic region. This increases the difficulty of seamlessly integrating predictive 
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models into hospital workflows. Workflow heterogeneity also raises the question of 

whether the reported performance of one model is reproducible in another clinical setting. 

This is ongoing research and satisfactory solutions have not been found. 

- The implementation of the FL pipeline for medical imaging could alleviate privacy 

concerns to a large extent. However, the peculiarities of healthcare organizations and 

medical imaging can lead to specific barriers that are significantly different from those 

encountered with other types of data. 

- Healthcare facilities often lack the on-premises or cloud-based computing facilities 

needed to establish interconnected networks. They may also need to prepare data 

management and standardization pipelines and have robust network connections. 

- Key functional challenges include intra-hospital bias, data heterogeneity, local model 

performance, and safety issues. 

- Several FL algorithms have been designed to solve these problems. Some promising 

results improve security, communication costs, data heterogeneity, and model 

performance. Research is underway and a universal solution has yet to be found. 
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CHAPTER VII: 

APPENDIX 

APPENDIX A 

SURVEY QUESTIONAIRE 

 

 

<Message to participant> 

Dear Participant, 

My name is Pavan Kumar Malwade and am pursuing Doctor of Business Administration 

(DBA) from Swiss School of Business and Management (SSBM) Geneva. 

 

I would like to invite you to participate in my dissertation thesis survey. My research 
project will test the hypotheses whether there is positive correlation of trustworthiness and 
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robustness of Federated machine learning models which influences the user adoption intent 

of AI-based tools in radiology medical imaging 

 

The survey has 12 questions. 

 

The survey will be conducted using Google Forms which complies with security, privacy, 

and regulatory requirements. The data will be securely stored. 

 

As token of appreciation of your investment of time, I would be happy to share the survey 

results within 1-2 months of completion. Please provide your email address to do so. 

 

Here is the link for the survey <Insert Survey URL> 

 

The Survey closes on <insert date>. Kindly complete at your earliest convenience. 

I sincerely appreciate your valuable time and grateful for fully completing the survey. 

Thank you, 

Pavan Kumar Malwade 

 

 

 

 

A. Background: 

 

The adoption of AI-based tools is currently challenging as healthcare professionals 

still express fundamental concerns about the implementation due to concerns with 

trustworthiness and robustness (Kaissis et al., 2020). The major barriers in adaption the 

machine learning tools by customers were generalizability, lack of trust due to bias and 

safety mechanisms and complying with regulations through transparent and explainable 

algorithm while preserving data privacy and security. 

 

Federated Learning is expected to address the problem of bias, generalizability, and 

privacy concerns of Traditional machine learning. Federated learning (FL) is a learning 

paradigm seeking to address the problem of data governance and privacy by training 

algorithms collaboratively without exchanging the data itself. (Reike et. al., 2020) 

 

The experimental studies conducted in various modalities of radiology medical 

imaging has positive results showing federated learning performs better than traditional 

machine learning and theoretically improve the robustness of algorithm while preserving 

the patient data. Federated learning offers easy scalability, flexible training scheduling, and 

large training datasets through multi-site collaborations, all essential conditions to the 
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successful deployment of an AI solution (Stripelis et al., 2021, Yang et al., 2021, Linardos 

et al. 2021, Sarma et al., 2021, Dayan et al., 2021 and Sheller et al., 2020). 

 

Although there are several advantages of federated learning, important challenges 

like security concerns, regulatory compliance, model performance monitoring etc. must be 

addressed before federated learning is optimally able to build acceptable AI models (Xu et 

al., 2021 and Rieke et al., 2020). 

 
 

B. Definitions of Terms: 

Bias: systematic difference in treatment of certain objects, people, or groups in comparison to 

others (DRAFT ISO/IEC DIS 22989, 3.4.4. p 10) 

Robustness: ability of a system to maintain its level of performance under any 

circumstances (DRAFT ISO/IEC DIS 22989, 3.4.11. p 11) 

Trustworthiness: ability to meet stakeholders’ expectations in a verifiable way 

(DRAFT ISO/IEC DIS 22989, 3.4.11. p 11) 

Federated learning (FL): A learning paradigm seeking to address the problem of data 

governance and privacy by training algorithms collaboratively without exchanging the data 

itself. (Reike et. al., 2020). 

 
C. Questionnaire: 

 

Trustworthiness 

 

Please evaluate how much you agree with the statements below using the 5-point scale, 

with 1 being Strongly disagree and 5 being Strongly agree. 

 

1. My perception of trustworthiness of federated learning over traditional machine 

learning is that 
 

 1 2 3 4 5 

a. It can preserve 

privacy 

 

 

 

 

 

 

 

 

 

 

b. It can produce 

Results that are 

Unbiased 

 

 

 

 

 

 

 

 

 

 

c. It can produce 
Explainable 
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machine 
learning models 

     

d. It can adapt to 

specific needs 

and stakeholder 
requirements 

 

 

 

 

 

 

 

 

 

 

e. It inspires trust 

in machine 

learning models 

used in AI- 

based tools in 

radiology 

 

 

 

 

 

 

 

 

 

 

 

 

Robustness: 

Please evaluate how much you agree with the statements below using the 5-point scale, 

with 1 being Strongly disagree and 5 being Strongly agree. 

 

2. My perception of robustness of Federated learning over traditional machine 

learning is that 
 

 

 1 2 3 4 5 

a. It can produce 

Accurate results 

 

 

 

 

 

 

 

 

 

 

b. The algorithm 

performance is 

better over 

traditional 

machine 

learning 

 

 

 

 

 

 

 

 

 

 

c. It produces 

results that are 

Generalizable 

for the intended 

population 

 

 

 

 

 

 

 

 

 

 

d. Algorithm will 

always stay 

most updated 
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e. It is reliable 

over traditional 

machine 
learning models 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Intention to use AI based tools 

 

3. Does use of Federated Learning approach influence your adoption intent of AI 

based tools? 
 

 
 

 1 2 3 4 5 

a.   I agree to use AI- 

based tools for clinical 

purposes 

 

 

 

 

 

 

 

 

 

 

b. Using AI-based tools 

for healthcare 

purposes is something 

I would consider 

 

 

 

 

 

 

 

 

 

 

c. I would like to use AI- 

based devices to 

manage my healthcare 

 

 

 

 

 

 

 

 

 

 

d. In the future, I am 

willing to use AI- 

based services for 

diagnostics and 
treatments 

 

 

 

 

 

 

 

 

 

 

e. I am very likely to use 

recommendations 

provided by AI-based 
tools for care planning 

 

 

 

 

 

 

 

 

 

 

 

 

Participant Experience and Knowledge 

4. Do you have knowledge of Federated Learning? 

a. Yes 

b. No 
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5. If answer is “Yes” for question 4, according to you what is your level of 

knowledge of Federated Learning? 

Please evaluate using the 5-point scale, with 1 being “Very low” and 5 being 

“Very high”. 
 

 

(1) Very 

low 

(2) low (3) moderate (4) High (5) Very 

High 

 

 

 

 

 

 

 

 

 

 

 

6. Are you currently a user of AI-based tool for radiology clinical workflows? 

a. Yes 

b. No 

 
7. Are you currently a user of AI-based tool for other than radiology clinical 

workflows? (For example: Ophthalmology) 

a. Yes 

b. No 

 
8. Have you participated/contributed for experiments related to Federated Machine 

Learning experiments or currently intent to do? 

a. Yes 

b. No 

 

9. Which one among below roles describes you the best? 

 

a. Clinician 

b. Radiologist 

c. Algorithm Developer 

d. Data scientist 

e. Algorithm Vendor 

f. AI enthusiast 

g. others. 

 

10. Your experience in relevant field or area. Eg: Healthcare, Data Science, Artificial 

Intelligence etc. 

a. 0-5 

b. 5-10 

c. 10-15 

d. More than 15 
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11. which country do you belong? 
< To provide option to select from Drop down list of countries or manually type 

name of country> 

 

Optional 

12. In case you wish to receive a copy of survey results, please provide your email 

address. The survey results would be shared within 1-2 months of completion. 

<Space for email address> 



167  

 
 

Actual Questionnaire (Google Form) sent to Respondents. 
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